[English] 日本語
Yorodumi
- PDB-6v00: structure of human KCNQ1-KCNE3-CaM complex -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 6v00
Titlestructure of human KCNQ1-KCNE3-CaM complex
Components
  • Calmodulin-1
  • MCherry fluorescent protein,Potassium voltage-gated channel subfamily E member 3
  • Potassium voltage-gated channel subfamily KQT member 1
KeywordsMEMBRANE PROTEIN / potassium channel / KCNQ1 / CaM
Function / homology
Function and homology information


negative regulation of membrane repolarization during ventricular cardiac muscle cell action potential / gastrin-induced gastric acid secretion / corticosterone secretion / voltage-gated potassium channel activity involved in atrial cardiac muscle cell action potential repolarization / basolateral part of cell / voltage-gated potassium channel activity involved in cardiac muscle cell action potential repolarization / lumenal side of membrane / negative regulation of voltage-gated potassium channel activity / rhythmic behavior / negative regulation of potassium ion export across plasma membrane ...negative regulation of membrane repolarization during ventricular cardiac muscle cell action potential / gastrin-induced gastric acid secretion / corticosterone secretion / voltage-gated potassium channel activity involved in atrial cardiac muscle cell action potential repolarization / basolateral part of cell / voltage-gated potassium channel activity involved in cardiac muscle cell action potential repolarization / lumenal side of membrane / negative regulation of voltage-gated potassium channel activity / rhythmic behavior / negative regulation of potassium ion export across plasma membrane / regulation of gastric acid secretion / stomach development / membrane repolarization during atrial cardiac muscle cell action potential / iodide transport / Phase 3 - rapid repolarisation / membrane repolarization during action potential / regulation of atrial cardiac muscle cell membrane repolarization / Phase 2 - plateau phase / intracellular chloride ion homeostasis / membrane repolarization during ventricular cardiac muscle cell action potential / membrane repolarization during cardiac muscle cell action potential / negative regulation of delayed rectifier potassium channel activity / renal sodium ion absorption / potassium ion export across plasma membrane / atrial cardiac muscle cell action potential / detection of mechanical stimulus involved in sensory perception of sound / auditory receptor cell development / voltage-gated potassium channel activity involved in ventricular cardiac muscle cell action potential repolarization / regulation of membrane repolarization / protein phosphatase 1 binding / positive regulation of potassium ion transmembrane transport / delayed rectifier potassium channel activity / Voltage gated Potassium channels / non-motile cilium assembly / potassium ion homeostasis / ventricular cardiac muscle cell action potential / outward rectifier potassium channel activity / regulation of ventricular cardiac muscle cell membrane repolarization / cardiac muscle cell contraction / CaM pathway / intestinal absorption / Cam-PDE 1 activation / Sodium/Calcium exchangers / Calmodulin induced events / inner ear morphogenesis / Reduction of cytosolic Ca++ levels / CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde / Activation of Ca-permeable Kainate Receptor / Loss of phosphorylation of MECP2 at T308 / CREB1 phosphorylation through the activation of Adenylate Cyclase / PKA activation / negative regulation of high voltage-gated calcium channel activity / monoatomic ion channel complex / ciliary base / CaMK IV-mediated phosphorylation of CREB / Glycogen breakdown (glycogenolysis) / positive regulation of cyclic-nucleotide phosphodiesterase activity / organelle localization by membrane tethering / negative regulation of calcium ion export across plasma membrane / CLEC7A (Dectin-1) induces NFAT activation / regulation of heart contraction / autophagosome membrane docking / mitochondrion-endoplasmic reticulum membrane tethering / Activation of RAC1 downstream of NMDARs / positive regulation of heart rate / regulation of cardiac muscle cell action potential / sodium ion transport / adrenergic receptor signaling pathway / cochlea development / renal absorption / action potential / positive regulation of ryanodine-sensitive calcium-release channel activity / neuronal cell body membrane / regulation of cell communication by electrical coupling involved in cardiac conduction / Synthesis of IP3 and IP4 in the cytosol / negative regulation of peptidyl-threonine phosphorylation / protein kinase A regulatory subunit binding / Negative regulation of NMDA receptor-mediated neuronal transmission / Phase 0 - rapid depolarisation / potassium ion import across plasma membrane / Unblocking of NMDA receptors, glutamate binding and activation / negative regulation of ryanodine-sensitive calcium-release channel activity / regulation of heart rate by cardiac conduction / protein kinase A catalytic subunit binding / protein phosphatase activator activity / RHO GTPases activate PAKs / Ion transport by P-type ATPases / : / inner ear development / Uptake and function of anthrax toxins / social behavior / Long-term potentiation / Regulation of MECP2 expression and activity / Calcineurin activates NFAT / voltage-gated potassium channel activity / catalytic complex / DARPP-32 events / detection of calcium ion / regulation of cardiac muscle contraction / Smooth Muscle Contraction
Similarity search - Function
Potassium channel, voltage-dependent, beta subunit, KCNE3 / Potassium channel, voltage-dependent, beta subunit, KCNE / Slow voltage-gated potassium channel / Potassium channel, voltage dependent, KCNQ1 / Potassium channel, voltage dependent, KCNQ / Potassium channel, voltage dependent, KCNQ, C-terminal / KCNQ voltage-gated potassium channel / : / Voltage-dependent channel domain superfamily / Green fluorescent protein, GFP ...Potassium channel, voltage-dependent, beta subunit, KCNE3 / Potassium channel, voltage-dependent, beta subunit, KCNE / Slow voltage-gated potassium channel / Potassium channel, voltage dependent, KCNQ1 / Potassium channel, voltage dependent, KCNQ / Potassium channel, voltage dependent, KCNQ, C-terminal / KCNQ voltage-gated potassium channel / : / Voltage-dependent channel domain superfamily / Green fluorescent protein, GFP / Green fluorescent protein-related / Green fluorescent protein / Green fluorescent protein / EF-hand domain pair / EF-hand, calcium binding motif / EF-Hand 1, calcium-binding site / EF-hand calcium-binding domain. / EF-hand calcium-binding domain profile. / EF-hand domain / Ion transport domain / Ion transport protein / EF-hand domain pair
Similarity search - Domain/homology
Calmodulin-1 / Potassium voltage-gated channel subfamily KQT member 1 / Potassium voltage-gated channel subfamily E member 3 / MCherry fluorescent protein
Similarity search - Component
Biological speciesHomo sapiens (human)
Anaplasma marginale (bacteria)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.1 Å
AuthorsMackinnon, R. / Sun, J.
Funding support United States, 2items
OrganizationGrant numberCountry
National Institutes of Health/National Heart, Lung, and Blood Institute (NIH/NHLBI)5K99HL143037 United States
Howard Hughes Medical Institute (HHMI) United States
CitationJournal: Cell / Year: 2020
Title: Structural Basis of Human KCNQ1 Modulation and Gating.
Authors: Ji Sun / Roderick MacKinnon /
Abstract: KCNQ1, also known as Kv7.1, is a voltage-dependent K channel that regulates gastric acid secretion, salt and glucose homeostasis, and heart rhythm. Its functional properties are regulated in a tissue- ...KCNQ1, also known as Kv7.1, is a voltage-dependent K channel that regulates gastric acid secretion, salt and glucose homeostasis, and heart rhythm. Its functional properties are regulated in a tissue-specific manner through co-assembly with beta subunits KCNE1-5. In non-excitable cells, KCNQ1 forms a complex with KCNE3, which suppresses channel closure at negative membrane voltages that otherwise would close it. Pore opening is regulated by the signaling lipid PIP2. Using cryoelectron microscopy (cryo-EM), we show that KCNE3 tucks its single-membrane-spanning helix against KCNQ1, at a location that appears to lock the voltage sensor in its depolarized conformation. Without PIP2, the pore remains closed. Upon addition, PIP2 occupies a site on KCNQ1 within the inner membrane leaflet, which triggers a large conformational change that leads to dilation of the pore's gate. It is likely that this mechanism of PIP2 activation is conserved among Kv7 channels.
History
DepositionNov 16, 2019Deposition site: RCSB / Processing site: RCSB
Revision 1.0Dec 4, 2019Provider: repository / Type: Initial release
Revision 1.1Dec 18, 2019Group: Author supporting evidence / Category: pdbx_audit_support / Item: _pdbx_audit_support.funding_organization
Revision 1.2Jan 15, 2020Group: Database references / Category: citation / citation_author
Item: _citation.journal_abbrev / _citation.journal_id_CSD ..._citation.journal_abbrev / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year / _citation_author.identifier_ORCID / _citation_author.name
Revision 1.3Feb 5, 2020Group: Database references / Category: citation
Item: _citation.journal_volume / _citation.page_first ..._citation.journal_volume / _citation.page_first / _citation.page_last / _citation.year
Revision 1.4Mar 6, 2024Group: Data collection / Database references / Category: chem_comp_atom / chem_comp_bond / database_2
Item: _database_2.pdbx_DOI / _database_2.pdbx_database_accession

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-20966
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Potassium voltage-gated channel subfamily KQT member 1
B: Calmodulin-1
C: MCherry fluorescent protein,Potassium voltage-gated channel subfamily E member 3
D: Potassium voltage-gated channel subfamily KQT member 1
E: Calmodulin-1
F: MCherry fluorescent protein,Potassium voltage-gated channel subfamily E member 3
G: Potassium voltage-gated channel subfamily KQT member 1
H: Calmodulin-1
I: MCherry fluorescent protein,Potassium voltage-gated channel subfamily E member 3
J: Potassium voltage-gated channel subfamily KQT member 1
K: Calmodulin-1
L: MCherry fluorescent protein,Potassium voltage-gated channel subfamily E member 3
hetero molecules


Theoretical massNumber of molelcules
Total (without water)481,14620
Polymers480,82512
Non-polymers3218
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: gel filtration
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein
Potassium voltage-gated channel subfamily KQT member 1 / IKs producing slow voltage-gated potassium channel subunit alpha KvLQT1 / KQT-like 1 / Voltage- ...IKs producing slow voltage-gated potassium channel subunit alpha KvLQT1 / KQT-like 1 / Voltage-gated potassium channel subunit Kv7.1


Mass: 63258.574 Da / Num. of mol.: 4
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: KCNQ1, KCNA8, KCNA9, KVLQT1 / Production host: Homo sapiens (human) / References: UniProt: P51787
#2: Protein
Calmodulin-1


Mass: 16852.545 Da / Num. of mol.: 4
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: CALM1, CALM, CAM, CAM1 / Production host: Homo sapiens (human) / References: UniProt: P0DP23
#3: Protein
MCherry fluorescent protein,Potassium voltage-gated channel subfamily E member 3 / MinK-related peptide 2 / Minimum potassium ion channel-related peptide 2 / Potassium channel ...MinK-related peptide 2 / Minimum potassium ion channel-related peptide 2 / Potassium channel subunit beta MiRP2


Mass: 40095.168 Da / Num. of mol.: 4
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Anaplasma marginale (bacteria), (gene. exp.) Homo sapiens (human)
Gene: mCherry, KCNE3 / Production host: Homo sapiens (human) / References: UniProt: X5DSL3, UniProt: Q9Y6H6
#4: Chemical
ChemComp-CA / CALCIUM ION


Mass: 40.078 Da / Num. of mol.: 8 / Source method: obtained synthetically / Formula: Ca
Has ligand of interestN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: KCNQ1-CaM complex / Type: COMPLEX / Entity ID: #1-#3 / Source: RECOMBINANT
Molecular weightExperimental value: NO
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Homo sapiens (human)
Buffer solutionpH: 7.4
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD
Image recordingElectron dose: 94 e/Å2 / Film or detector model: GATAN K2 SUMMIT (4k x 4k)

-
Processing

SoftwareName: PHENIX / Version: 1.13_2998: / Classification: refinement
EM softwareName: RELION / Category: 3D reconstruction
CTF correctionType: NONE
3D reconstructionResolution: 3.1 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 39074 / Symmetry type: POINT
Atomic model buildingProtocol: AB INITIO MODEL

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more