+
Open data
-
Basic information
Entry | Database: PDB / ID: 6uzz | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | structure of human KCNQ1-CaM complex | |||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | MEMBRANE PROTEIN / potassium channel / KCNQ1 / CaM | |||||||||||||||||||||||||||||||||||||||||||||||||||
Function / homology | ![]() gastrin-induced gastric acid secretion / corticosterone secretion / voltage-gated potassium channel activity involved in atrial cardiac muscle cell action potential repolarization / basolateral part of cell / lumenal side of membrane / negative regulation of voltage-gated potassium channel activity / rhythmic behavior / iodide transport / regulation of gastric acid secretion / stomach development ...gastrin-induced gastric acid secretion / corticosterone secretion / voltage-gated potassium channel activity involved in atrial cardiac muscle cell action potential repolarization / basolateral part of cell / lumenal side of membrane / negative regulation of voltage-gated potassium channel activity / rhythmic behavior / iodide transport / regulation of gastric acid secretion / stomach development / voltage-gated potassium channel activity involved in cardiac muscle cell action potential repolarization / membrane repolarization during atrial cardiac muscle cell action potential / Phase 3 - rapid repolarisation / membrane repolarization during action potential / regulation of atrial cardiac muscle cell membrane repolarization / Phase 2 - plateau phase / intracellular chloride ion homeostasis / membrane repolarization during ventricular cardiac muscle cell action potential / membrane repolarization during cardiac muscle cell action potential / negative regulation of delayed rectifier potassium channel activity / renal sodium ion absorption / detection of mechanical stimulus involved in sensory perception of sound / auditory receptor cell development / potassium ion export across plasma membrane / atrial cardiac muscle cell action potential / voltage-gated potassium channel activity involved in ventricular cardiac muscle cell action potential repolarization / regulation of membrane repolarization / protein phosphatase 1 binding / delayed rectifier potassium channel activity / positive regulation of potassium ion transmembrane transport / ventricular cardiac muscle cell action potential / Voltage gated Potassium channels / potassium ion homeostasis / non-motile cilium assembly / regulation of ventricular cardiac muscle cell membrane repolarization / cardiac muscle cell contraction / outward rectifier potassium channel activity / CaM pathway / intestinal absorption / Cam-PDE 1 activation / Sodium/Calcium exchangers / Calmodulin induced events / Reduction of cytosolic Ca++ levels / Activation of Ca-permeable Kainate Receptor / CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde / Loss of phosphorylation of MECP2 at T308 / CREB1 phosphorylation through the activation of Adenylate Cyclase / inner ear morphogenesis / PKA activation / CaMK IV-mediated phosphorylation of CREB / negative regulation of high voltage-gated calcium channel activity / Glycogen breakdown (glycogenolysis) / CLEC7A (Dectin-1) induces NFAT activation / Activation of RAC1 downstream of NMDARs / negative regulation of calcium ion export across plasma membrane / organelle localization by membrane tethering / mitochondrion-endoplasmic reticulum membrane tethering / adrenergic receptor signaling pathway / autophagosome membrane docking / cochlea development / presynaptic endocytosis / renal absorption / regulation of heart contraction / regulation of cardiac muscle cell action potential / ciliary base / positive regulation of ryanodine-sensitive calcium-release channel activity / Synthesis of IP3 and IP4 in the cytosol / protein kinase A regulatory subunit binding / regulation of cell communication by electrical coupling involved in cardiac conduction / Phase 0 - rapid depolarisation / protein kinase A catalytic subunit binding / Negative regulation of NMDA receptor-mediated neuronal transmission / negative regulation of ryanodine-sensitive calcium-release channel activity / social behavior / potassium ion import across plasma membrane / Unblocking of NMDA receptors, glutamate binding and activation / RHO GTPases activate PAKs / calcineurin-mediated signaling / inner ear development / regulation of heart rate by cardiac conduction / Ion transport by P-type ATPases / Uptake and function of anthrax toxins / action potential / Long-term potentiation / Regulation of MECP2 expression and activity / Calcineurin activates NFAT / protein phosphatase activator activity / regulation of ryanodine-sensitive calcium-release channel activity / DARPP-32 events / voltage-gated potassium channel activity / monoatomic ion channel complex / Smooth Muscle Contraction / catalytic complex / detection of calcium ion / regulation of cardiac muscle contraction / RHO GTPases activate IQGAPs / regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion / presynaptic cytosol / calcium channel inhibitor activity / positive regulation of heart rate Similarity search - Function | |||||||||||||||||||||||||||||||||||||||||||||||||||
Biological species | ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.1 Å | |||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | Mackinnon, R. / Sun, J. | |||||||||||||||||||||||||||||||||||||||||||||||||||
Funding support | ![]()
| |||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ![]() Title: Structural Basis of Human KCNQ1 Modulation and Gating. Authors: Ji Sun / Roderick MacKinnon / ![]() Abstract: KCNQ1, also known as Kv7.1, is a voltage-dependent K channel that regulates gastric acid secretion, salt and glucose homeostasis, and heart rhythm. Its functional properties are regulated in a tissue- ...KCNQ1, also known as Kv7.1, is a voltage-dependent K channel that regulates gastric acid secretion, salt and glucose homeostasis, and heart rhythm. Its functional properties are regulated in a tissue-specific manner through co-assembly with beta subunits KCNE1-5. In non-excitable cells, KCNQ1 forms a complex with KCNE3, which suppresses channel closure at negative membrane voltages that otherwise would close it. Pore opening is regulated by the signaling lipid PIP2. Using cryoelectron microscopy (cryo-EM), we show that KCNE3 tucks its single-membrane-spanning helix against KCNQ1, at a location that appears to lock the voltage sensor in its depolarized conformation. Without PIP2, the pore remains closed. Upon addition, PIP2 occupies a site on KCNQ1 within the inner membrane leaflet, which triggers a large conformational change that leads to dilation of the pore's gate. It is likely that this mechanism of PIP2 activation is conserved among Kv7 channels. | |||||||||||||||||||||||||||||||||||||||||||||||||||
History |
|
-
Structure visualization
Movie |
![]() |
---|---|
Structure viewer | Molecule: ![]() ![]() |
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 357.8 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 288.5 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Arichive directory | ![]() ![]() | HTTPS FTP |
---|
-Related structure data
Related structure data | ![]() 20965MC ![]() 6v00C ![]() 6v01C M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
#1: Protein | Mass: 63258.574 Da / Num. of mol.: 4 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() #2: Protein | Mass: 16852.545 Da / Num. of mol.: 4 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() #3: Chemical | ChemComp-CA / Has ligand of interest | N | Has protein modification | N | |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component | Name: KCNQ1-CaM complex / Type: COMPLEX / Entity ID: #1-#2 / Source: RECOMBINANT |
---|---|
Molecular weight | Experimental value: NO |
Source (natural) | Organism: ![]() |
Source (recombinant) | Organism: ![]() |
Buffer solution | pH: 7.4 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD |
Image recording | Electron dose: 94 e/Å2 / Film or detector model: GATAN K2 SUMMIT (4k x 4k) |
-
Processing
Software | Name: PHENIX / Version: 1.13_2998: / Classification: refinement | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
EM software |
| |||||||||
CTF correction | Type: NONE | |||||||||
Symmetry | Point symmetry: C4 (4 fold cyclic) | |||||||||
3D reconstruction | Resolution: 3.1 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 66746 / Symmetry type: POINT | |||||||||
Atomic model building | Protocol: AB INITIO MODEL |