+データを開く
-基本情報
登録情報 | データベース: EMDB / ID: EMD-13794 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
タイトル | Cryo-EM of the complex between human uromodulin (UMOD)/Tamm-Horsfall protein (THP) and the FimH lectin domain from uropathogenic E. coli | |||||||||||||||
マップデータ | Unprocessed cryo-EM map of the lectin domain of fimbrial adhesin FimH from uropathogenic Escherichia coli bound to the branch of native human uromodulin (UMOD)/Tamm-Horsfall protein (THP). | |||||||||||||||
試料 |
| |||||||||||||||
キーワード | EGF DOMAIN / DECOY MODULE / BETA-HAIRPIN / D10C DOMAIN / D8C DOMAIN / EXTRACELLULAR MATRIX / GLYCOPROTEIN / N-GLYCAN / HIGH-MANNOSE SUGAR / CELL ADHESION / ANTIMICROBIAL PROTEIN / BACTERIAL ADHESIN / TYPE I PILUS / SUGAR BINDING PROTEIN / LECTIN / URINARY TRACT INFECTION / UTI / UROPATHOGENIC E. COLI / UPEC | |||||||||||||||
機能・相同性 | 機能・相同性情報 citric acid secretion / metanephric thick ascending limb development / metanephric distal convoluted tubule development / connective tissue replacement / protein transport into plasma membrane raft / Asparagine N-linked glycosylation / organ or tissue specific immune response / urea transmembrane transport / micturition / metanephric ascending thin limb development ...citric acid secretion / metanephric thick ascending limb development / metanephric distal convoluted tubule development / connective tissue replacement / protein transport into plasma membrane raft / Asparagine N-linked glycosylation / organ or tissue specific immune response / urea transmembrane transport / micturition / metanephric ascending thin limb development / collecting duct development / regulation of protein transport / protein localization to vacuole / urate transport / intracellular chloride ion homeostasis / antibacterial innate immune response / renal urate salt excretion / juxtaglomerular apparatus development / renal sodium ion absorption / intracellular phosphate ion homeostasis / glomerular filtration / neutrophil migration / response to water deprivation / potassium ion homeostasis / intracellular sodium ion homeostasis / regulation of urine volume / endoplasmic reticulum organization / IgG binding / pilus / heterophilic cell-cell adhesion via plasma membrane cell adhesion molecules / ciliary membrane / extrinsic component of membrane / leukocyte cell-cell adhesion / cellular response to unfolded protein / multicellular organismal response to stress / renal water homeostasis / cellular defense response / side of membrane / chaperone-mediated protein folding / ERAD pathway / tumor necrosis factor-mediated signaling pathway / RNA splicing / apoptotic signaling pathway / lipid metabolic process / cilium / regulation of blood pressure / autophagy / spindle pole / Golgi lumen / intracellular calcium ion homeostasis / basolateral plasma membrane / defense response to Gram-negative bacterium / response to lipopolysaccharide / cell adhesion / inflammatory response / response to xenobiotic stimulus / apical plasma membrane / negative regulation of cell population proliferation / calcium ion binding / cell surface / endoplasmic reticulum / extracellular space / extracellular exosome / membrane 類似検索 - 分子機能 | |||||||||||||||
生物種 | Homo sapiens (ヒト) / Escherichia coli (strain UTI89 / UPEC) (大腸菌) | |||||||||||||||
手法 | 単粒子再構成法 / クライオ電子顕微鏡法 / 解像度: 7.4 Å | |||||||||||||||
データ登録者 | Jovine L / Xu C | |||||||||||||||
資金援助 | シンガポール, 4件
| |||||||||||||||
引用 | ジャーナル: Nature / 年: 2021 タイトル: Highly accurate protein structure prediction with AlphaFold. 著者: John Jumper / Richard Evans / Alexander Pritzel / Tim Green / Michael Figurnov / Olaf Ronneberger / Kathryn Tunyasuvunakool / Russ Bates / Augustin Žídek / Anna Potapenko / Alex Bridgland / ...著者: John Jumper / Richard Evans / Alexander Pritzel / Tim Green / Michael Figurnov / Olaf Ronneberger / Kathryn Tunyasuvunakool / Russ Bates / Augustin Žídek / Anna Potapenko / Alex Bridgland / Clemens Meyer / Simon A A Kohl / Andrew J Ballard / Andrew Cowie / Bernardino Romera-Paredes / Stanislav Nikolov / Rishub Jain / Jonas Adler / Trevor Back / Stig Petersen / David Reiman / Ellen Clancy / Michal Zielinski / Martin Steinegger / Michalina Pacholska / Tamas Berghammer / Sebastian Bodenstein / David Silver / Oriol Vinyals / Andrew W Senior / Koray Kavukcuoglu / Pushmeet Kohli / Demis Hassabis / 要旨: Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort, the structures of around ...Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort, the structures of around 100,000 unique proteins have been determined, but this represents a small fraction of the billions of known protein sequences. Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence-the structure prediction component of the 'protein folding problem'-has been an important open research problem for more than 50 years. Despite recent progress, existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14), demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm. | |||||||||||||||
履歴 |
|
-構造の表示
ムービー |
ムービービューア |
---|---|
構造ビューア | EMマップ: SurfViewMolmilJmol/JSmol |
添付画像 |
-ダウンロードとリンク
-EMDBアーカイブ
マップデータ | emd_13794.map.gz | 193.4 MB | EMDBマップデータ形式 | |
---|---|---|---|---|
ヘッダ (付随情報) | emd-13794-v30.xml emd-13794.xml | 40.6 KB 40.6 KB | 表示 表示 | EMDBヘッダ |
FSC (解像度算出) | emd_13794_fsc.xml | 18.2 KB | 表示 | FSCデータファイル |
画像 | emd_13794.png | 44.5 KB | ||
Filedesc metadata | emd-13794.cif.gz | 10.2 KB | ||
その他 | emd_13794_additional_1.map.gz emd_13794_half_map_1.map.gz emd_13794_half_map_2.map.gz | 54.8 MB 195.1 MB 194.5 MB | ||
アーカイブディレクトリ | http://ftp.pdbj.org/pub/emdb/structures/EMD-13794 ftp://ftp.pdbj.org/pub/emdb/structures/EMD-13794 | HTTPS FTP |
-検証レポート
文書・要旨 | emd_13794_validation.pdf.gz | 727.1 KB | 表示 | EMDB検証レポート |
---|---|---|---|---|
文書・詳細版 | emd_13794_full_validation.pdf.gz | 726.7 KB | 表示 | |
XML形式データ | emd_13794_validation.xml.gz | 20.9 KB | 表示 | |
CIF形式データ | emd_13794_validation.cif.gz | 27.5 KB | 表示 | |
アーカイブディレクトリ | https://ftp.pdbj.org/pub/emdb/validation_reports/EMD-13794 ftp://ftp.pdbj.org/pub/emdb/validation_reports/EMD-13794 | HTTPS FTP |
-関連構造データ
-リンク
EMDBのページ | EMDB (EBI/PDBe) / EMDataResource |
---|---|
「今月の分子」の関連する項目 |
-マップ
ファイル | ダウンロード / ファイル: emd_13794.map.gz / 形式: CCP4 / 大きさ: 244.1 MB / タイプ: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
注釈 | Unprocessed cryo-EM map of the lectin domain of fimbrial adhesin FimH from uropathogenic Escherichia coli bound to the branch of native human uromodulin (UMOD)/Tamm-Horsfall protein (THP). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
投影像・断面図 | 画像のコントロール
画像は Spider により作成 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ボクセルのサイズ | X=Y=Z: 0.84 Å | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
密度 |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
対称性 | 空間群: 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
詳細 | EMDB XML:
CCP4マップ ヘッダ情報:
|
-添付データ
-追加マップ: Bound FimH lectin domain density merged with UMOD branch density.
ファイル | emd_13794_additional_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
注釈 | Bound FimH lectin domain density merged with UMOD branch density. | ||||||||||||
投影像・断面図 |
| ||||||||||||
密度ヒストグラム |
-ハーフマップ: Cryo-EM half map 2 of the lectin domain...
ファイル | emd_13794_half_map_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
注釈 | Cryo-EM half map 2 of the lectin domain of fimbrial adhesin FimH from uropathogenic Escherichia coli bound to the branch of native human uromodulin (UMOD)/Tamm-Horsfall protein (THP). | ||||||||||||
投影像・断面図 |
| ||||||||||||
密度ヒストグラム |
-ハーフマップ: Cryo-EM half map 1 of the lectin domain...
ファイル | emd_13794_half_map_2.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
注釈 | Cryo-EM half map 1 of the lectin domain of fimbrial adhesin FimH from uropathogenic Escherichia coli bound to the branch of native human uromodulin (UMOD)/Tamm-Horsfall protein (THP). | ||||||||||||
投影像・断面図 |
| ||||||||||||
密度ヒストグラム |
-試料の構成要素
-全体 : Complex of human uromodulin (UMOD)/Tamm-Horsfall protein (THP) an...
全体 | 名称: Complex of human uromodulin (UMOD)/Tamm-Horsfall protein (THP) and the lectin domain of the FimH adhesin of uropathogenic E. coli |
---|---|
要素 |
|
-超分子 #1: Complex of human uromodulin (UMOD)/Tamm-Horsfall protein (THP) an...
超分子 | 名称: Complex of human uromodulin (UMOD)/Tamm-Horsfall protein (THP) and the lectin domain of the FimH adhesin of uropathogenic E. coli タイプ: complex / ID: 1 / 親要素: 0 / 含まれる分子: all |
---|
-超分子 #2: Uromodulin
超分子 | 名称: Uromodulin / タイプ: complex / ID: 2 / 親要素: 1 / 含まれる分子: #1 |
---|---|
由来(天然) | 生物種: Homo sapiens (ヒト) |
-超分子 #3: Type 1 fimbiral adhesin FimH
超分子 | 名称: Type 1 fimbiral adhesin FimH / タイプ: complex / ID: 3 / 親要素: 1 / 含まれる分子: #2 |
---|---|
由来(天然) | 生物種: Escherichia coli (strain UTI89 / UPEC) (大腸菌) |
-分子 #1: Uromodulin
分子 | 名称: Uromodulin / タイプ: protein_or_peptide / ID: 1 / コピー数: 1 / 光学異性体: LEVO |
---|---|
由来(天然) | 生物種: Homo sapiens (ヒト) |
分子量 | 理論値: 61.498816 KDa |
配列 | 文字列: DTSEARWCSE CHSNATCTED EAVTTCTCQE GFTGDGLTCV DLDECAIPGA HNCSANSSCV NTPGSFSCVC PEGFRLSPGL GCTDVDECA EPGLSHCHAL ATCVNVVGSY LCVCPAGYRG DGWHCECSPG SCGPGLDCVP EGDALVCADP CQAHRTLDEY W RSTEYGEG ...文字列: DTSEARWCSE CHSNATCTED EAVTTCTCQE GFTGDGLTCV DLDECAIPGA HNCSANSSCV NTPGSFSCVC PEGFRLSPGL GCTDVDECA EPGLSHCHAL ATCVNVVGSY LCVCPAGYRG DGWHCECSPG SCGPGLDCVP EGDALVCADP CQAHRTLDEY W RSTEYGEG YACDTDLRGW YRFVGQGGAR MAETCVPVLR CNTAAPMWLN GTHPSSDEGI VSRKACAHWS GHCCLWDASV QV KACAGGY YVYNLTAPPE CHLAYCTDPS SVEGTCEECS IDEDCKSNNG RWHCQCKQDF NITDISLLEH RLECGANDMK VSL GKCQLK SLGFDKVFMY LSDSRCSGFN DRDNRDWVSV VTPARDGPCG TVLTRNETHA TYSNTLYLAD EIIIRDLNIK INFA CSYPL DMKVSLKTAL QPMVSALNIR VGGTGMFTVR MALFQTPSYT QPYQGSSVTL STEAFLYVGT MLDGGDLSRF ALLMT NCYA TPSSNATDPL KYFIIQDRCP HTRDSTIQVV ENGESSQGRF SVQMFRFAGN YDLVYLHCEV YLCDTMNEKC KPTCSG TRF UniProtKB: Uromodulin |
-分子 #2: Type 1 fimbiral adhesin FimH
分子 | 名称: Type 1 fimbiral adhesin FimH / タイプ: protein_or_peptide / ID: 2 / コピー数: 1 / 光学異性体: LEVO |
---|---|
由来(天然) | 生物種: Escherichia coli (strain UTI89 / UPEC) (大腸菌) |
分子量 | 理論値: 18.669688 KDa |
組換発現 | 生物種: Escherichia coli (大腸菌) |
配列 | 文字列: FACKTANGTA IPIGGGSANV YVNLAPVVNV GQNLVVDLST QIFCHNDYPE TITDYVTLQR GAAYGGVLSS FSGTVKYNGS SYPFPTTSE TPRVVYNSRT DKPWPVALYL TPVSSAGGVA IKAGSLIAVL ILRQTNNYNS DDFQFVWNIY ANNDVVVPTG S HHWGHHHH HHHH UniProtKB: Type 1 fimbiral adhesin FimH |
-実験情報
-構造解析
手法 | クライオ電子顕微鏡法 |
---|---|
解析 | 単粒子再構成法 |
試料の集合状態 | filament |
-試料調製
濃度 | 1.8 mg/mL |
---|---|
緩衝液 | pH: 7 / 構成要素 - 濃度: 10.0 mM / 構成要素 - 式: C8H17N2NaO4S / 構成要素 - 名称: Na-HEPES |
グリッド | モデル: Quantifoil R2/2 / 材質: COPPER / メッシュ: 300 / 支持フィルム - 材質: CARBON / 支持フィルム - トポロジー: HOLEY / 前処理 - タイプ: GLOW DISCHARGE / 前処理 - 時間: 40 sec. / 前処理 - 雰囲気: AIR |
凍結 | 凍結剤: ETHANE / チャンバー内温度: 294 K / 装置: FEI VITROBOT MARK IV |
-電子顕微鏡法
顕微鏡 | TFS KRIOS |
---|---|
特殊光学系 | エネルギーフィルター - 名称: GIF Bioquantum / エネルギーフィルター - スリット幅: 20 eV |
撮影 | フィルム・検出器のモデル: GATAN K3 BIOQUANTUM (6k x 4k) 実像数: 13616 / 平均露光時間: 1.7 sec. / 平均電子線量: 40.0 e/Å2 |
電子線 | 加速電圧: 300 kV / 電子線源: FIELD EMISSION GUN |
電子光学系 | 照射モード: FLOOD BEAM / 撮影モード: BRIGHT FIELD / Cs: 2.7 mm |
試料ステージ | 試料ホルダーモデル: FEI TITAN KRIOS AUTOGRID HOLDER ホルダー冷却材: NITROGEN |
実験機器 | モデル: Titan Krios / 画像提供: FEI Company |
+画像解析
-原子モデル構築 1
初期モデル |
| ||||||||
---|---|---|---|---|---|---|---|---|---|
精密化 | 空間: REAL / プロトコル: RIGID BODY FIT / 温度因子: 396.23 | ||||||||
得られたモデル | PDB-7q3n: |