[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleHow RAG1/2 evolved from ancestral transposases to initiate V(D)J recombination without transposition.
Journal, issue, pagesProc Natl Acad Sci U S A, Vol. 122, Issue 31, Page e2512362122, Year 2025
Publish dateAug 5, 2025
AuthorsXuemin Chen / Liangrui Yao / Wenwen Li / Shanshan Ma / Xingyun Yuan / Yang Yang / Yuan Yuan / Yumei Liu / Lan Liu / Huaibin Wang / Martin Gellert / Wei Yang /
PubMed AbstractThe recombination activating genes 1 and 2 (RAG1/2) recombinase, which initiates V(D)J recombination in jawed vertebrates, evolved from RNaseH-like transposases such as Transib and ProtoRAG. However, ...The recombination activating genes 1 and 2 (RAG1/2) recombinase, which initiates V(D)J recombination in jawed vertebrates, evolved from RNaseH-like transposases such as Transib and ProtoRAG. However, its postcleavage transposase activity is strictly suppressed. Previous structural studies have focused only on the conserved core domains of RAG1/2, leaving the regulatory mechanisms of the noncore regions unclear. To investigate how RAG1/2 suppresses transposition and regulates DNA cleavage, we determined cryo-electron microscopy (cryo-EM) structures of nearly full-length RAG1/2 complexed with cleaved recombination signal sequences (RSS) in a signal-end complex (SEC) at resolutions up to 2.95 Å. Two key structures, SEC-0 and SEC-Plant Homeodomain (PHD), reveal distinct regulatory roles of RAG2, which is absent in Transib transposase. SEC-0 displays a closed conformation, revealing that the core RAG2 facilitates sequential DNA cleavage by stabilizing the RSS-cleaved states in a "spring-loaded" mechanism. SEC-PHD reveals how RAG2's noncore PHD and Acidic Hinge (AH), which are absent in ProtoRAG, inhibit target DNA binding in transposition. Histone H3K4me3, which recruits RAG1/2 to RSS sites, does not influence RAG1/2 binding to V, D, or J gene segments bordered by RSS. In contrast, the suppressed transposition can be activated by H3K4me3 peptides that dislodge the inhibitory PHD. To achieve this derepression in vivo, however, would require an unlikely close placement of two nucleosomes flanking a target DNA bent by nearly 180°. Our structural and biochemical results elucidate how RAG1 has acquired RAG2 and utilizes its core and noncore domains to enhance V(D)J recombination and suppress transposition.
External linksProc Natl Acad Sci U S A / PubMed:40729386 / PubMed Central
MethodsEM (single particle)
Resolution2.95 - 3.43 Å
Structure data

EMDB-61715, PDB-9jpu:
CryoEM structure of mouse RAG SEC-PHD
Method: EM (single particle) / Resolution: 3.25 Å

EMDB-61717, PDB-9jpx:
CryoEM structure of mouse RAG SEC-0
Method: EM (single particle) / Resolution: 2.95 Å

EMDB-61730, PDB-9jqn:
CryoEM structure of mouse RAG SEC-2DNA
Method: EM (single particle) / Resolution: 3.03 Å

EMDB-61816, PDB-9jts:
CryoEM structure of mouse RAG SEC-1DNA (12RSS side)
Method: EM (single particle) / Resolution: 3.36 Å

EMDB-61817, PDB-9jtu:
CryoEM structure of mouse RAG SEC-1DNA (23RSS side)
Method: EM (single particle) / Resolution: 3.43 Å

Chemicals

ChemComp-CA:
Unknown entry

ChemComp-ZN:
Unknown entry

ChemComp-HOH:
WATER

Source
  • mus musculus (house mouse)
  • escherichia coli (E. coli)
KeywordsDNA BINDING PROTEIN/DNA / V(D)J recombination / RAG / PHD / Transposition / DNA BINDING PROTEIN / DNA BINDING PROTEIN-DNA complex

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more