[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleMolecular basis of tRNA substrate recognition and modification by the atypical SPOUT methyltransferase Trm10.
Journal, issue, pagesbioRxiv, Year 2025
Publish dateDec 14, 2025
AuthorsSuparno Nandi / Sarah E Strassler / Debayan Dey / Aiswarya Krishnamohan / George M Harris / Lindsay R Comstock / Jane E Jackman / Graeme L Conn /
PubMed AbstractThe evolutionarily conserved methyltransferase Trm10 modifies the N1 position of guanosine 9 (G9) in some tRNAs, but how the enzyme recognizes and modifies its substrate tRNAs remains unclear. Here, ...The evolutionarily conserved methyltransferase Trm10 modifies the N1 position of guanosine 9 (G9) in some tRNAs, but how the enzyme recognizes and modifies its substrate tRNAs remains unclear. Here, we used an S-adenosyl-L-methionine (SAM) analog to trap the Trm10-tRNA complex and enable determination of its structure in a post-catalytic state by cryogenic electron microscopy (cryo-EM). We observed three distinct complexes: two with a single Trm10 bound to tRNA that differ in their tRNA acceptor stem orientation ("closed" and "open") and a minor population with two Trm10s engaging the same tRNA. The monomeric complexes reveal a positively charged surface that guides the G9 into the catalytic site with key conserved residues forming "pincer"-like interactions that stabilize the flipped methylated nucleotide. In the open tRNA conformation, the acceptor stem is rotated away from the enzyme, weakening the tRNA-protein contacts, consistent with a product-release conformation. The dimeric complex, which is supported by tRNA-dependent protein crosslinking, reveals one Trm10 positioned similarly to the monomeric complexes and engaged with G9, while the other Trm10 contacts distal tRNA regions, suggesting a potential role in facilitating a key conformational transition during the process of catalysis or modified tRNA release. Finally, molecular dynamics simulations comparing G9- and A9-containing complexes reveal that G9 is efficiently stabilized in the binding pocket unlike A9, identifying the structural basis for guanosine selectivity. Overall, these findings reveal the structural determinants of G9-specific tRNA methylation by Trm10 and suggest a unique mechanism of action among RNA-modifying SPOUT methyltransferases.
External linksbioRxiv / PubMed:41427370 / PubMed Central
MethodsEM (single particle)
Resolution3.37 - 3.89 Å
Structure data

EMDB-72368, PDB-9xzq:
Trm10-tRNA complex (closed conformation)
Method: EM (single particle) / Resolution: 3.63 Å

EMDB-72369, PDB-9xzr:
Trm10-tRNA complex (open conformation)
Method: EM (single particle) / Resolution: 3.37 Å

EMDB-72370, PDB-9xzs:
Trm10-tRNA complex (Two Trm10 monomers bound to one tRNA)
Method: EM (single particle) / Resolution: 3.89 Å

Chemicals

ChemComp-AN6:
5'-{[(3S)-3-amino-3-carboxypropyl](ethyl)amino}-5'-deoxyadenosine

Source
  • saccharomyces cerevisiae (brewer's yeast)
  • saccharomyces cerevisiae bmn1-35 (yeast)
KeywordsRNA BINDING PROTEIN/RNA / SPOUT methyltransferase / Complex / tRNA / methylation / RNA BINDING PROTEIN / RNA BINDING PROTEIN-RNA complex

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more