[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleCryo-EM structure of the human Kv3.1 channel reveals gating control by the cytoplasmic T1 domain.
Journal, issue, pagesNat Commun, Vol. 13, Issue 1, Page 4087, Year 2022
Publish dateJul 15, 2022
AuthorsGamma Chi / Qiansheng Liang / Akshay Sridhar / John B Cowgill / Kasim Sader / Mazdak Radjainia / Pu Qian / Pablo Castro-Hartmann / Shayla Venkaya / Nanki Kaur Singh / Gavin McKinley / Alejandra Fernandez-Cid / Shubhashish M M Mukhopadhyay / Nicola A Burgess-Brown / Lucie Delemotte / Manuel Covarrubias / Katharina L Dürr /
PubMed AbstractKv3 channels have distinctive gating kinetics tailored for rapid repolarization in fast-spiking neurons. Malfunction of this process due to genetic variants in the KCNC1 gene causes severe epileptic ...Kv3 channels have distinctive gating kinetics tailored for rapid repolarization in fast-spiking neurons. Malfunction of this process due to genetic variants in the KCNC1 gene causes severe epileptic disorders, yet the structural determinants for the unusual gating properties remain elusive. Here, we present cryo-electron microscopy structures of the human Kv3.1a channel, revealing a unique arrangement of the cytoplasmic tetramerization domain T1 which facilitates interactions with C-terminal axonal targeting motif and key components of the gating machinery. Additional interactions between S1/S2 linker and turret domain strengthen the interface between voltage sensor and pore domain. Supported by molecular dynamics simulations, electrophysiological and mutational analyses, we identify several residues in the S4/S5 linker which influence the gating kinetics and an electrostatic interaction between acidic residues in α6 of T1 and R449 in the pore-flanking S6T helices. These findings provide insights into gating control and disease mechanisms and may guide strategies for the design of pharmaceutical drugs targeting Kv3 channels.
External linksNat Commun / PubMed:35840580 / PubMed Central
MethodsEM (single particle)
Resolution3.1 - 3.2 Å
Structure data

EMDB-13416, PDB-7phh:
Human voltage-gated potassium channel Kv3.1 (apo condition)
Method: EM (single particle) / Resolution: 3.2 Å

EMDB-13417, PDB-7phi:
Human voltage-gated potassium channel Kv3.1 (with Zn)
Method: EM (single particle) / Resolution: 3.1 Å

EMDB-13418, PDB-7phk:
Human voltage-gated potassium channel Kv3.1 in dimeric state (with Zn)
Method: EM (single particle) / Resolution: 3.1 Å

EMDB-13419, PDB-7phl:
Human voltage-gated potassium channel Kv3.1 (with EDTA)
Method: EM (single particle) / Resolution: 3.2 Å

Chemicals

ChemComp-PCF:
1,2-DIACYL-SN-GLYCERO-3-PHOSHOCHOLINE

ChemComp-ZN:
Unknown entry

ChemComp-K:
Unknown entry

Source
  • homo sapiens (human)
KeywordsTRANSPORT PROTEIN / Channel / potassium channel / tetramer / voltage-gated / membrane protein

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more