[English] 日本語
Yorodumi
- EMDB-24301: SARS-CoV-2 spike glycoprotein ectodomain in complex with the S2H9... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-24301
TitleSARS-CoV-2 spike glycoprotein ectodomain in complex with the S2H97 neutralizing antibody Fab fragment
Map data
Sample
  • Complex: SARS-CoV-2 spike glycoprotein ectodomain in complex with the S2H97 neutralizing antibody Fab fragment
    • Complex: SARS-CoV-2 spike
    • Complex: S2H97
Function / homology
Function and homology information


Maturation of spike protein / viral translation / Translation of Structural Proteins / Virion Assembly and Release / host cell surface / host extracellular space / suppression by virus of host tetherin activity / Induction of Cell-Cell Fusion / structural constituent of virion / entry receptor-mediated virion attachment to host cell ...Maturation of spike protein / viral translation / Translation of Structural Proteins / Virion Assembly and Release / host cell surface / host extracellular space / suppression by virus of host tetherin activity / Induction of Cell-Cell Fusion / structural constituent of virion / entry receptor-mediated virion attachment to host cell / host cell endoplasmic reticulum-Golgi intermediate compartment membrane / receptor-mediated endocytosis of virus by host cell / membrane fusion / Attachment and Entry / positive regulation of viral entry into host cell / receptor-mediated virion attachment to host cell / receptor ligand activity / host cell surface receptor binding / symbiont-mediated suppression of host innate immune response / fusion of virus membrane with host plasma membrane / fusion of virus membrane with host endosome membrane / viral envelope / virion attachment to host cell / SARS-CoV-2 activates/modulates innate and adaptive immune responses / host cell plasma membrane / virion membrane / identical protein binding / membrane / plasma membrane
Similarity search - Function
Spike (S) protein S1 subunit, receptor-binding domain, SARS-CoV-2 / Spike (S) protein S1 subunit, N-terminal domain, SARS-CoV-like / Coronavirus spike glycoprotein S1, C-terminal / Coronavirus spike glycoprotein S1, C-terminal / Spike glycoprotein, betacoronavirus / Spike glycoprotein, N-terminal domain superfamily / Betacoronavirus spike (S) glycoprotein S1 subunit N-terminal (NTD) domain profile. / Betacoronavirus spike (S) glycoprotein S1 subunit C-terminal (CTD) domain profile. / Spike (S) protein S1 subunit, receptor-binding domain, betacoronavirus / Spike S1 subunit, receptor binding domain superfamily, betacoronavirus ...Spike (S) protein S1 subunit, receptor-binding domain, SARS-CoV-2 / Spike (S) protein S1 subunit, N-terminal domain, SARS-CoV-like / Coronavirus spike glycoprotein S1, C-terminal / Coronavirus spike glycoprotein S1, C-terminal / Spike glycoprotein, betacoronavirus / Spike glycoprotein, N-terminal domain superfamily / Betacoronavirus spike (S) glycoprotein S1 subunit N-terminal (NTD) domain profile. / Betacoronavirus spike (S) glycoprotein S1 subunit C-terminal (CTD) domain profile. / Spike (S) protein S1 subunit, receptor-binding domain, betacoronavirus / Spike S1 subunit, receptor binding domain superfamily, betacoronavirus / Betacoronavirus spike glycoprotein S1, receptor binding / Spike glycoprotein S1, N-terminal domain, betacoronavirus-like / Betacoronavirus-like spike glycoprotein S1, N-terminal / Spike glycoprotein S2, coronavirus, heptad repeat 1 / Spike glycoprotein S2, coronavirus, heptad repeat 2 / Coronavirus spike (S) glycoprotein S2 subunit heptad repeat 1 (HR1) region profile. / Coronavirus spike (S) glycoprotein S2 subunit heptad repeat 2 (HR2) region profile. / Spike glycoprotein S2 superfamily, coronavirus / Spike glycoprotein S2, coronavirus / Coronavirus spike glycoprotein S2
Similarity search - Domain/homology
Biological speciesSevere acute respiratory syndrome coronavirus 2 / Homo sapiens (human)
Methodsingle particle reconstruction / cryo EM / Resolution: 3.64 Å
AuthorsPark YJ / Veesler D
Funding support United States, 1 items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)R01GM120553 United States
CitationJournal: Nature / Year: 2021
Title: SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape.
Authors: Tyler N Starr / Nadine Czudnochowski / Zhuoming Liu / Fabrizia Zatta / Young-Jun Park / Amin Addetia / Dora Pinto / Martina Beltramello / Patrick Hernandez / Allison J Greaney / Roberta ...Authors: Tyler N Starr / Nadine Czudnochowski / Zhuoming Liu / Fabrizia Zatta / Young-Jun Park / Amin Addetia / Dora Pinto / Martina Beltramello / Patrick Hernandez / Allison J Greaney / Roberta Marzi / William G Glass / Ivy Zhang / Adam S Dingens / John E Bowen / M Alejandra Tortorici / Alexandra C Walls / Jason A Wojcechowskyj / Anna De Marco / Laura E Rosen / Jiayi Zhou / Martin Montiel-Ruiz / Hannah Kaiser / Josh R Dillen / Heather Tucker / Jessica Bassi / Chiara Silacci-Fregni / Michael P Housley / Julia di Iulio / Gloria Lombardo / Maria Agostini / Nicole Sprugasci / Katja Culap / Stefano Jaconi / Marcel Meury / Exequiel Dellota / Rana Abdelnabi / Shi-Yan Caroline Foo / Elisabetta Cameroni / Spencer Stumpf / Tristan I Croll / Jay C Nix / Colin Havenar-Daughton / Luca Piccoli / Fabio Benigni / Johan Neyts / Amalio Telenti / Florian A Lempp / Matteo S Pizzuto / John D Chodera / Christy M Hebner / Herbert W Virgin / Sean P J Whelan / David Veesler / Davide Corti / Jesse D Bloom / Gyorgy Snell /
Abstract: An ideal therapeutic anti-SARS-CoV-2 antibody would resist viral escape, have activity against diverse sarbecoviruses, and be highly protective through viral neutralization and effector functions. ...An ideal therapeutic anti-SARS-CoV-2 antibody would resist viral escape, have activity against diverse sarbecoviruses, and be highly protective through viral neutralization and effector functions. Understanding how these properties relate to each other and vary across epitopes would aid the development of therapeutic antibodies and guide vaccine design. Here we comprehensively characterize escape, breadth and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD). Despite a trade-off between in vitro neutralization potency and breadth of sarbecovirus binding, we identify neutralizing antibodies with exceptional sarbecovirus breadth and a corresponding resistance to SARS-CoV-2 escape. One of these antibodies, S2H97, binds with high affinity across all sarbecovirus clades to a cryptic epitope and prophylactically protects hamsters from viral challenge. Antibodies that target the angiotensin-converting enzyme 2 (ACE2) receptor-binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency. Nevertheless, we also characterize a potent RBM antibody (S2E12) with breadth across sarbecoviruses related to SARS-CoV-2 and a high barrier to viral escape. These data highlight principles underlying variation in escape, breadth and potency among antibodies that target the RBD, and identify epitopes and features to prioritize for therapeutic development against the current and potential future pandemics.
History
DepositionJun 25, 2021-
Header (metadata) releaseJul 21, 2021-
Map releaseJul 21, 2021-
UpdateSep 15, 2021-
Current statusSep 15, 2021Processing site: RCSB / Status: Released

-
Structure visualization

Movie
  • Surface view with section colored by density value
  • Surface level: 0.26
  • Imaged by UCSF Chimera
  • Download
  • Surface view colored by cylindrical radius
  • Surface level: 0.26
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerEM map:
SurfViewMolmilJmol/JSmol
Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_24301.map.gz / Format: CCP4 / Size: 244.1 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
Projections & slices

Image control

Size
Brightness
Contrast
Others
AxesZ (Sec.)Y (Row.)X (Col.)
1.16 Å/pix.
x 400 pix.
= 464. Å
1.16 Å/pix.
x 400 pix.
= 464. Å
1.16 Å/pix.
x 400 pix.
= 464. Å

Surface

Projections

Slices (1/3)

Slices (1/2)

Slices (2/3)

Images are generated by Spider.

Voxel sizeX=Y=Z: 1.16 Å
Density
Contour LevelBy AUTHOR: 0.26 / Movie #1: 0.26
Minimum - Maximum-1.2803969 - 2.668308
Average (Standard dev.)-0.0003790578 (±0.049824677)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions400400400
Spacing400400400
CellA=B=C: 464.0 Å
α=β=γ: 90.0 °

CCP4 map header:

modeImage stored as Reals
Å/pix. X/Y/Z1.161.161.16
M x/y/z400400400
origin x/y/z0.0000.0000.000
length x/y/z464.000464.000464.000
α/β/γ90.00090.00090.000
start NX/NY/NZ000
NX/NY/NZ330330330
MAP C/R/S123
start NC/NR/NS000
NC/NR/NS400400400
D min/max/mean-1.2802.668-0.000

-
Supplemental data

-
Additional map: #1

Fileemd_24301_additional_1.map
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Half map: #1

Fileemd_24301_half_map_1.map
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Half map: #2

Fileemd_24301_half_map_2.map
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Sample components

-
Entire : SARS-CoV-2 spike glycoprotein ectodomain in complex with the S2H9...

EntireName: SARS-CoV-2 spike glycoprotein ectodomain in complex with the S2H97 neutralizing antibody Fab fragment
Components
  • Complex: SARS-CoV-2 spike glycoprotein ectodomain in complex with the S2H97 neutralizing antibody Fab fragment
    • Complex: SARS-CoV-2 spike
    • Complex: S2H97

-
Supramolecule #1: SARS-CoV-2 spike glycoprotein ectodomain in complex with the S2H9...

SupramoleculeName: SARS-CoV-2 spike glycoprotein ectodomain in complex with the S2H97 neutralizing antibody Fab fragment
type: complex / ID: 1 / Parent: 0 / Macromolecule list: #1-#3

-
Supramolecule #2: SARS-CoV-2 spike

SupramoleculeName: SARS-CoV-2 spike / type: complex / ID: 2 / Parent: 1 / Macromolecule list: #2
Source (natural)Organism: Severe acute respiratory syndrome coronavirus 2
Recombinant expressionOrganism: Homo sapiens (human)

-
Supramolecule #3: S2H97

SupramoleculeName: S2H97 / type: complex / ID: 3 / Parent: 1 / Macromolecule list: #1, #3
Source (natural)Organism: Homo sapiens (human)
Recombinant expressionOrganism: Homo sapiens (human)

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation stateparticle

-
Sample preparation

BufferpH: 8
VitrificationCryogen name: ETHANE

-
Electron microscopy

MicroscopeTFS GLACIOS
Image recordingFilm or detector model: GATAN K2 SUMMIT (4k x 4k) / Detector mode: COUNTING / Average electron dose: 60.0 e/Å2
Electron beamAcceleration voltage: 200 kV / Electron source: FIELD EMISSION GUN
Electron opticsIllumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD

-
Image processing

Startup modelType of model: OTHER / Details: cryoSPARC ab initio
Final reconstructionResolution.type: BY AUTHOR / Resolution: 3.64 Å / Resolution method: FSC 0.143 CUT-OFF / Software - Name: cryoSPARC / Number images used: 98950
Initial angle assignmentType: PROJECTION MATCHING
Final angle assignmentType: PROJECTION MATCHING

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more