[English] 日本語

- PDB-9d9z: Structure of human UBR4-KCMF1-CaM E3 ligase complex (Silencing Fa... -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 9d9z | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Structure of human UBR4-KCMF1-CaM E3 ligase complex (Silencing Factor of the Integrated stress response, SiFI) | |||||||||
![]() |
| |||||||||
![]() | LIGASE / E3 liase / UBR4 / SIFI | |||||||||
Function / homology | ![]() negative regulation of HRI-mediated signaling / synaptic signaling / ubiquitin-dependent protein catabolic process via the N-end rule pathway / protein K27-linked ubiquitination / cytoplasm protein quality control by the ubiquitin-proteasome system / protein branched polyubiquitination / negative regulation of fatty acid biosynthetic process / endosome organization / cytoplasm protein quality control / protein K11-linked ubiquitination ...negative regulation of HRI-mediated signaling / synaptic signaling / ubiquitin-dependent protein catabolic process via the N-end rule pathway / protein K27-linked ubiquitination / cytoplasm protein quality control by the ubiquitin-proteasome system / protein branched polyubiquitination / negative regulation of fatty acid biosynthetic process / endosome organization / cytoplasm protein quality control / protein K11-linked ubiquitination / CaM pathway / Cam-PDE 1 activation / Sodium/Calcium exchangers / Calmodulin induced events / Reduction of cytosolic Ca++ levels / Activation of Ca-permeable Kainate Receptor / CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde / Loss of phosphorylation of MECP2 at T308 / CREB1 phosphorylation through the activation of Adenylate Cyclase / PKA activation / CaMK IV-mediated phosphorylation of CREB / negative regulation of high voltage-gated calcium channel activity / Glycogen breakdown (glycogenolysis) / CLEC7A (Dectin-1) induces NFAT activation / Activation of RAC1 downstream of NMDARs / negative regulation of calcium ion export across plasma membrane / organelle localization by membrane tethering / mitochondrion-endoplasmic reticulum membrane tethering / autophagosome membrane docking / presynaptic endocytosis / regulation of cardiac muscle cell action potential / positive regulation of ryanodine-sensitive calcium-release channel activity / Synthesis of IP3 and IP4 in the cytosol / regulation of cell communication by electrical coupling involved in cardiac conduction / Phase 0 - rapid depolarisation / Negative regulation of NMDA receptor-mediated neuronal transmission / negative regulation of ryanodine-sensitive calcium-release channel activity / Unblocking of NMDA receptors, glutamate binding and activation / RHO GTPases activate PAKs / calcineurin-mediated signaling / Ion transport by P-type ATPases / Uptake and function of anthrax toxins / tertiary granule membrane / Long-term potentiation / Regulation of MECP2 expression and activity / Calcineurin activates NFAT / protein phosphatase activator activity / ficolin-1-rich granule membrane / regulation of ryanodine-sensitive calcium-release channel activity / DARPP-32 events / protein K63-linked ubiquitination / Smooth Muscle Contraction / catalytic complex / detection of calcium ion / regulation of cardiac muscle contraction / RHO GTPases activate IQGAPs / regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion / presynaptic cytosol / calcium channel inhibitor activity / protein K48-linked ubiquitination / cellular response to interferon-beta / specific granule membrane / Protein methylation / Activation of AMPK downstream of NMDARs / Ion homeostasis / regulation of release of sequestered calcium ion into cytosol by sarcoplasmic reticulum / eNOS activation / regulation of calcium-mediated signaling / Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation / titin binding / positive regulation of autophagy / voltage-gated potassium channel complex / sperm midpiece / substantia nigra development / calcium channel complex / calyx of Held / FCERI mediated Ca+2 mobilization / Ras activation upon Ca2+ influx through NMDA receptor / FCGR3A-mediated IL10 synthesis / adenylate cyclase activator activity / regulation of heart rate / Antigen activates B Cell Receptor (BCR) leading to generation of second messengers / protein serine/threonine kinase activator activity / VEGFR2 mediated cell proliferation / sarcomere / regulation of cytokinesis / VEGFR2 mediated vascular permeability / Translocation of SLC2A4 (GLUT4) to the plasma membrane / positive regulation of receptor signaling pathway via JAK-STAT / spindle microtubule / RAF activation / Transcriptional activation of mitochondrial biogenesis / RING-type E3 ubiquitin transferase / Stimuli-sensing channels / cellular response to type II interferon / long-term synaptic potentiation / response to calcium ion / RAS processing / spindle pole / Signaling by RAF1 mutants Similarity search - Function | |||||||||
Biological species | ![]() | |||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.4 Å | |||||||||
![]() | Yang, Z. / Rape, M. | |||||||||
Funding support | ![]()
| |||||||||
![]() | ![]() Title: Molecular basis of SIFI activity in the integrated stress response. Authors: Zhi Yang / Diane L Haakonsen / Michael Heider / Samuel R Witus / Alex Zelter / Tobias Beschauner / Michael J MacCoss / Michael Rapé / ![]() ![]() ![]() Abstract: Chronic stress response activation impairs cell survival and causes devastating degenerative diseases. Organisms accordingly deploy silencing factors, such as the E3 ubiquitin ligase silencing factor ...Chronic stress response activation impairs cell survival and causes devastating degenerative diseases. Organisms accordingly deploy silencing factors, such as the E3 ubiquitin ligase silencing factor of the integrated stress response (SIFI), to terminate stress response signalling and ensure cellular homeostasis. How a silencing factor can sense stress across cellular scales to elicit timely stress response inactivation is poorly understood. Here we combine cryo-electron microscopy analysis of endogenous SIFI with AlphaFold modelling and biochemical studies to report the structural and mechanistic basis of the silencing of the integrated stress response. SIFI detects both stress indicators and stress response components through flexible domains within an easily accessible scaffold, before building linkage-specific ubiquitin chains at separate, sterically restricted elongation modules. Ubiquitin handover by a ubiquitin-like domain couples versatile substrate modification to linkage-specific ubiquitin polymer formation. Stress response silencing therefore exploits a catalytic mechanism that is geared towards processing many diverse proteins and therefore allows a single enzyme to monitor and, if needed, modulate a complex cellular state. | |||||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 1.5 MB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 1.2 MB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Arichive directory | ![]() ![]() | HTTPS FTP |
---|
-Related structure data
Related structure data | ![]() 46686MC ![]() 9nwdC ![]() 9nweC C: citing same article ( M: map data used to model this data |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
#1: Protein | Mass: 577180.938 Da / Num. of mol.: 2 / Source method: isolated from a natural source / Details: (endogenously FLAG-tagged at the N-terminus) / Source: (natural) ![]() References: UniProt: Q5T4S7, RING-type E3 ubiquitin transferase #2: Protein | Mass: 16852.545 Da / Num. of mol.: 2 / Source method: isolated from a natural source / Source: (natural) ![]() #3: Protein | Mass: 41992.348 Da / Num. of mol.: 2 / Source method: isolated from a natural source / Source: (natural) ![]() References: UniProt: Q9P0J7, RING-type E3 ubiquitin transferase #4: Chemical | ChemComp-ZN / #5: Chemical | ChemComp-CA / Has ligand of interest | N | Has protein modification | Y | |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component | Name: Endogenous UBR4-KCMF1-CaM E3 Ligase complex (Silencing Factor of the Integrated stress response) Type: COMPLEX / Entity ID: #1-#3 / Source: NATURAL |
---|---|
Molecular weight | Value: 1.3 MDa / Experimental value: YES |
Source (natural) | Organism: ![]() |
Buffer solution | pH: 7.5 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Specimen support | Grid material: GOLD / Grid type: Quantifoil R1.2/1.3 |
Vitrification | Instrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 283.15 K |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: TFS KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 2600 nm / Nominal defocus min: 800 nm / Cs: 2.7 mm |
Image recording | Electron dose: 40 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k) |
-
Processing
EM software |
| ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF correction | Type: PHASE FLIPPING ONLY | ||||||||||||||||||||||||||||||||||||||||||||
3D reconstruction | Resolution: 3.4 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 126380 / Symmetry type: POINT |