[English] 日本語
Yorodumi
- PDB-9czp: Type Id amyloid-beta 42 filaments in dominantly inherited Alzheim... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 9czp
TitleType Id amyloid-beta 42 filaments in dominantly inherited Alzheimer disease with cotton wool plaques
ComponentsAmyloid-beta protein 42
KeywordsNEUROPEPTIDE / Amyloid filaments / cotton wool plaques / neurodegeneration / PROTEIN FIBRIL
Function / homology
Function and homology information


amyloid-beta complex / negative regulation of presynapse assembly / cytosolic mRNA polyadenylation / collateral sprouting in absence of injury / microglia development / regulation of synapse structure or activity / regulation of Wnt signaling pathway / synaptic assembly at neuromuscular junction / Formyl peptide receptors bind formyl peptides and many other ligands / axo-dendritic transport ...amyloid-beta complex / negative regulation of presynapse assembly / cytosolic mRNA polyadenylation / collateral sprouting in absence of injury / microglia development / regulation of synapse structure or activity / regulation of Wnt signaling pathway / synaptic assembly at neuromuscular junction / Formyl peptide receptors bind formyl peptides and many other ligands / axo-dendritic transport / axon midline choice point recognition / smooth endoplasmic reticulum calcium ion homeostasis / astrocyte activation involved in immune response / NMDA selective glutamate receptor signaling pathway / mating behavior / regulation of spontaneous synaptic transmission / Golgi-associated vesicle / ciliary rootlet / PTB domain binding / Lysosome Vesicle Biogenesis / Insertion of tail-anchored proteins into the endoplasmic reticulum membrane / positive regulation of amyloid fibril formation / neuron remodeling / Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's disease models / nuclear envelope lumen / COPII-coated ER to Golgi transport vesicle / suckling behavior / signaling receptor activator activity / dendrite development / modulation of excitatory postsynaptic potential / TRAF6 mediated NF-kB activation / presynaptic active zone / positive regulation of protein metabolic process / neuromuscular process controlling balance / Advanced glycosylation endproduct receptor signaling / The NLRP3 inflammasome / negative regulation of long-term synaptic potentiation / regulation of presynapse assembly / regulation of multicellular organism growth / transition metal ion binding / intracellular copper ion homeostasis / negative regulation of neuron differentiation / ECM proteoglycans / spindle midzone / positive regulation of T cell migration / smooth endoplasmic reticulum / Purinergic signaling in leishmaniasis infection / forebrain development / positive regulation of chemokine production / clathrin-coated pit / Notch signaling pathway / protein serine/threonine kinase binding / positive regulation of G2/M transition of mitotic cell cycle / extracellular matrix organization / neuron projection maintenance / Mitochondrial protein degradation / response to interleukin-1 / ionotropic glutamate receptor signaling pathway / positive regulation of mitotic cell cycle / cholesterol metabolic process / axonogenesis / positive regulation of calcium-mediated signaling / dendritic shaft / platelet alpha granule lumen / adult locomotory behavior / positive regulation of glycolytic process / central nervous system development / positive regulation of interleukin-1 beta production / learning / trans-Golgi network membrane / positive regulation of long-term synaptic potentiation / endosome lumen / locomotory behavior / astrocyte activation / Post-translational protein phosphorylation / positive regulation of JNK cascade / microglial cell activation / regulation of long-term neuronal synaptic plasticity / serine-type endopeptidase inhibitor activity / synapse organization / TAK1-dependent IKK and NF-kappa-B activation / positive regulation of non-canonical NF-kappaB signal transduction / neuromuscular junction / visual learning / recycling endosome / positive regulation of interleukin-6 production / Golgi lumen / cognition / neuron cellular homeostasis / positive regulation of inflammatory response / endocytosis / Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs) / cellular response to amyloid-beta / neuron projection development / G2/M transition of mitotic cell cycle / positive regulation of tumor necrosis factor production / apical part of cell / synaptic vesicle / cell-cell junction / Platelet degranulation
Similarity search - Function
Amyloidogenic glycoprotein, copper-binding / Amyloidogenic glycoprotein, copper-binding domain conserved site / Amyloidogenic glycoprotein, copper-binding domain superfamily / Copper-binding of amyloid precursor, CuBD / Amyloid precursor protein (APP) copper-binding (CuBD) domain signature. / Amyloidogenic glycoprotein, amyloid-beta peptide superfamily / Beta-amyloid peptide (beta-APP) / Amyloidogenic glycoprotein, amyloid-beta peptide / Beta-amyloid precursor protein C-terminal / Amyloidogenic glycoprotein, intracellular domain, conserved site ...Amyloidogenic glycoprotein, copper-binding / Amyloidogenic glycoprotein, copper-binding domain conserved site / Amyloidogenic glycoprotein, copper-binding domain superfamily / Copper-binding of amyloid precursor, CuBD / Amyloid precursor protein (APP) copper-binding (CuBD) domain signature. / Amyloidogenic glycoprotein, amyloid-beta peptide superfamily / Beta-amyloid peptide (beta-APP) / Amyloidogenic glycoprotein, amyloid-beta peptide / Beta-amyloid precursor protein C-terminal / Amyloidogenic glycoprotein, intracellular domain, conserved site / Beta-amyloid precursor protein C-terminus / Amyloid precursor protein (APP) intracellular domain signature. / Amyloidogenic glycoprotein, extracellular / Amyloidogenic glycoprotein, heparin-binding / Amyloidogenic glycoprotein, E2 domain / E2 domain superfamily / Amyloidogenic glycoprotein, heparin-binding domain superfamily / Amyloid A4 N-terminal heparin-binding / E2 domain of amyloid precursor protein / Amyloid precursor protein (APP) E1 domain profile. / Amyloid precursor protein (APP) E2 domain profile. / amyloid A4 / Amyloidogenic glycoprotein / Proteinase inhibitor I2, Kunitz, conserved site / Pancreatic trypsin inhibitor (Kunitz) family signature. / BPTI/Kunitz family of serine protease inhibitors. / Pancreatic trypsin inhibitor Kunitz domain / Kunitz/Bovine pancreatic trypsin inhibitor domain / Pancreatic trypsin inhibitor (Kunitz) family profile. / Pancreatic trypsin inhibitor Kunitz domain superfamily / PH-like domain superfamily
Similarity search - Domain/homology
Amyloid-beta precursor protein
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / helical reconstruction / cryo EM / Resolution: 3.3 Å
AuthorsHoq, M.R. / Vago, F.S. / Ozcan, K.A. / Bharath, S.R.
Funding support United States, 2items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS)5U01 NS1104377 United States
National Institutes of Health/National Institute on Aging (NIH/NIA)1RF1 AG071177 United States
CitationJournal: Acta Neuropathol / Year: 2024
Title: Cryo-EM structures of cotton wool plaques' amyloid β and of tau filaments in dominantly inherited Alzheimer disease.
Authors: Md Rejaul Hoq / Anllely Fernandez / Frank S Vago / Grace I Hallinan / Sakshibeedu R Bharath / Daoyi Li / Kadir A Ozcan / Holly J Garringer / Wen Jiang / Ruben Vidal / Bernardino Ghetti /
Abstract: Cotton wool plaques (CWPs) have been described as features of the neuropathologic phenotype of dominantly inherited Alzheimer disease (DIAD) caused by some missense and deletion mutations in the ...Cotton wool plaques (CWPs) have been described as features of the neuropathologic phenotype of dominantly inherited Alzheimer disease (DIAD) caused by some missense and deletion mutations in the presenilin 1 (PSEN1) gene. CWPs are round, eosinophilic amyloid-β (Aβ) plaques that lack an amyloid core and are recognizable, but not fluorescent, in Thioflavin S (ThS) preparations. Amino-terminally truncated and post-translationally modified Aβ peptide species are the main component of CWPs. Tau immunopositive neurites may be present in CWPs. In addition, neurofibrillary tangles coexist with CWPs. Herein, we report the structure of Aβ and tau filaments isolated from brain tissue of individuals affected by DIAD caused by the PSEN1 V261I and A431E mutations, with the CWP neuropathologic phenotype. CWPs are predominantly composed of type I Aβ filaments present in two novel arrangements, type Ic and type Id; additionally, CWPs contain type I and type Ib Aβ filaments. Tau filaments have the AD fold, which has been previously reported in sporadic AD and DIAD. The formation of type Ic and type Id Aβ filaments may be the basis for the phenotype of CWPs. Our data are relevant for the development of PET imaging methodologies to best detect CWPs in DIAD.
History
DepositionAug 5, 2024Deposition site: RCSB / Processing site: RCSB
Revision 1.0Oct 2, 2024Provider: repository / Type: Initial release

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Amyloid-beta protein 42
B: Amyloid-beta protein 42
C: Amyloid-beta protein 42
D: Amyloid-beta protein 42
E: Amyloid-beta protein 42
F: Amyloid-beta protein 42
G: Amyloid-beta protein 42
H: Amyloid-beta protein 42
I: Amyloid-beta protein 42
J: Amyloid-beta protein 42
K: Amyloid-beta protein 42
L: Amyloid-beta protein 42
M: Amyloid-beta protein 42
N: Amyloid-beta protein 42
O: Amyloid-beta protein 42
P: Amyloid-beta protein 42
Q: Amyloid-beta protein 42
R: Amyloid-beta protein 42
S: Amyloid-beta protein 42
T: Amyloid-beta protein 42


Theoretical massNumber of molelcules
Total (without water)71,20320
Polymers71,20320
Non-polymers00
Water00
1


  • Idetical with deposited unit
  • defined by author&software
  • Evidence: electron microscopy, not applicable
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein/peptide
Amyloid-beta protein 42


Mass: 3560.128 Da / Num. of mol.: 20 / Fragment: UNP residues 680-713 / Source method: isolated from a natural source / Source: (natural) Homo sapiens (human) / References: UniProt: P05067

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: FILAMENT / 3D reconstruction method: helical reconstruction

-
Sample preparation

ComponentName: Type Id amyloid-beta 42 / Type: TISSUE / Entity ID: all / Source: NATURAL
Source (natural)Organism: Homo sapiens (human)
Buffer solutionpH: 7.4
Buffer component
IDConc.NameFormulaBuffer-ID
120 mMTris-HClC4H12ClNO31
2100 mMsodium chlorideNaCl1
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationInstrument: GATAN CRYOPLUNGE 3 / Cryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal magnification: 81000 X / Nominal defocus max: 2500 nm / Nominal defocus min: 500 nm / Cs: 2.7 mm / C2 aperture diameter: 50 µm
Specimen holderCryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER
Image recordingAverage exposure time: 3.21 sec. / Electron dose: 57.79 e/Å2 / Detector mode: COUNTING / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k) / Num. of grids imaged: 2 / Num. of real images: 23764
EM imaging opticsEnergyfilter name: GIF Bioquantum / Energyfilter slit width: 20 eV
Image scansSampling size: 5 µm / Width: 5760 / Height: 4092

-
Processing

EM software
IDNameVersionCategory
1RELION4.0.1particle selection
2EPU3.0.0.4164image acquisition
4CTFFIND4.1CTF correction
7Coot0.9.8.93model fitting
9PHENIX1.21.1-5286model refinement
10Rosetta3.13model refinement
11RELION4.0.1initial Euler assignment
12RELION4.0.1final Euler assignment
13RELION4.0.1classification
14RELION4.0.13D reconstruction
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
Helical symmertyAngular rotation/subunit: -1.74 ° / Axial rise/subunit: 4.77 Å / Axial symmetry: C1
3D reconstructionResolution: 3.3 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 5604 / Symmetry type: HELICAL
Atomic model buildingProtocol: AB INITIO MODEL / Space: REAL

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more