[English] 日本語

- PDB-9czn: Type Ic amyloid-beta 42 filaments in dominantly inherited Alzheim... -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 9czn | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Type Ic amyloid-beta 42 filaments in dominantly inherited Alzheimer disease with cotton wool plaques | |||||||||
![]() | Amyloid-beta protein 42 | |||||||||
![]() | NEUROPEPTIDE / Amyloid filaments / cotton wool plaques / neurodegeneration / PROTEIN FIBRIL | |||||||||
Function / homology | ![]() amyloid-beta complex / negative regulation of presynapse assembly / cytosolic mRNA polyadenylation / collateral sprouting in absence of injury / microglia development / regulation of synapse structure or activity / regulation of Wnt signaling pathway / synaptic assembly at neuromuscular junction / Formyl peptide receptors bind formyl peptides and many other ligands / axo-dendritic transport ...amyloid-beta complex / negative regulation of presynapse assembly / cytosolic mRNA polyadenylation / collateral sprouting in absence of injury / microglia development / regulation of synapse structure or activity / regulation of Wnt signaling pathway / synaptic assembly at neuromuscular junction / Formyl peptide receptors bind formyl peptides and many other ligands / axo-dendritic transport / axon midline choice point recognition / smooth endoplasmic reticulum calcium ion homeostasis / astrocyte activation involved in immune response / NMDA selective glutamate receptor signaling pathway / mating behavior / regulation of spontaneous synaptic transmission / Golgi-associated vesicle / ciliary rootlet / PTB domain binding / Lysosome Vesicle Biogenesis / Insertion of tail-anchored proteins into the endoplasmic reticulum membrane / positive regulation of amyloid fibril formation / neuron remodeling / Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's disease models / nuclear envelope lumen / COPII-coated ER to Golgi transport vesicle / suckling behavior / signaling receptor activator activity / dendrite development / modulation of excitatory postsynaptic potential / TRAF6 mediated NF-kB activation / presynaptic active zone / positive regulation of protein metabolic process / neuromuscular process controlling balance / Advanced glycosylation endproduct receptor signaling / The NLRP3 inflammasome / negative regulation of long-term synaptic potentiation / regulation of presynapse assembly / regulation of multicellular organism growth / transition metal ion binding / intracellular copper ion homeostasis / negative regulation of neuron differentiation / ECM proteoglycans / spindle midzone / positive regulation of T cell migration / smooth endoplasmic reticulum / Purinergic signaling in leishmaniasis infection / forebrain development / positive regulation of chemokine production / clathrin-coated pit / Notch signaling pathway / protein serine/threonine kinase binding / positive regulation of G2/M transition of mitotic cell cycle / extracellular matrix organization / neuron projection maintenance / Mitochondrial protein degradation / response to interleukin-1 / ionotropic glutamate receptor signaling pathway / positive regulation of mitotic cell cycle / cholesterol metabolic process / axonogenesis / positive regulation of calcium-mediated signaling / dendritic shaft / platelet alpha granule lumen / adult locomotory behavior / positive regulation of glycolytic process / central nervous system development / positive regulation of interleukin-1 beta production / learning / trans-Golgi network membrane / positive regulation of long-term synaptic potentiation / endosome lumen / locomotory behavior / astrocyte activation / Post-translational protein phosphorylation / positive regulation of JNK cascade / microglial cell activation / regulation of long-term neuronal synaptic plasticity / serine-type endopeptidase inhibitor activity / synapse organization / TAK1-dependent IKK and NF-kappa-B activation / positive regulation of non-canonical NF-kappaB signal transduction / neuromuscular junction / visual learning / recycling endosome / positive regulation of interleukin-6 production / Golgi lumen / cognition / neuron cellular homeostasis / positive regulation of inflammatory response / endocytosis / Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs) / cellular response to amyloid-beta / neuron projection development / G2/M transition of mitotic cell cycle / positive regulation of tumor necrosis factor production / apical part of cell / synaptic vesicle / cell-cell junction / Platelet degranulation Similarity search - Function | |||||||||
Biological species | ![]() | |||||||||
Method | ELECTRON MICROSCOPY / helical reconstruction / cryo EM / Resolution: 2.6 Å | |||||||||
![]() | Hoq, M.R. / Vago, F.S. / Ozcan, K.A. / Bharath, S.R. | |||||||||
Funding support | ![]()
| |||||||||
![]() | ![]() Title: Cryo-EM structures of cotton wool plaques' amyloid β and of tau filaments in dominantly inherited Alzheimer disease. Authors: Md Rejaul Hoq / Anllely Fernandez / Frank S Vago / Grace I Hallinan / Sakshibeedu R Bharath / Daoyi Li / Kadir A Ozcan / Holly J Garringer / Wen Jiang / Ruben Vidal / Bernardino Ghetti / ![]() Abstract: Cotton wool plaques (CWPs) have been described as features of the neuropathologic phenotype of dominantly inherited Alzheimer disease (DIAD) caused by some missense and deletion mutations in the ...Cotton wool plaques (CWPs) have been described as features of the neuropathologic phenotype of dominantly inherited Alzheimer disease (DIAD) caused by some missense and deletion mutations in the presenilin 1 (PSEN1) gene. CWPs are round, eosinophilic amyloid-β (Aβ) plaques that lack an amyloid core and are recognizable, but not fluorescent, in Thioflavin S (ThS) preparations. Amino-terminally truncated and post-translationally modified Aβ peptide species are the main component of CWPs. Tau immunopositive neurites may be present in CWPs. In addition, neurofibrillary tangles coexist with CWPs. Herein, we report the structure of Aβ and tau filaments isolated from brain tissue of individuals affected by DIAD caused by the PSEN1 V261I and A431E mutations, with the CWP neuropathologic phenotype. CWPs are predominantly composed of type I Aβ filaments present in two novel arrangements, type Ic and type Id; additionally, CWPs contain type I and type Ib Aβ filaments. Tau filaments have the AD fold, which has been previously reported in sporadic AD and DIAD. The formation of type Ic and type Id Aβ filaments may be the basis for the phenotype of CWPs. Our data are relevant for the development of PET imaging methodologies to best detect CWPs in DIAD. | |||||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 109.8 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 90.7 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Summary document | ![]() | 1.3 MB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 1.3 MB | Display | |
Data in XML | ![]() | 29.9 KB | Display | |
Data in CIF | ![]() | 44.5 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 46422MC ![]() 9cziC ![]() 9czlC ![]() 9czpC M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
#1: Protein/peptide | Mass: 3560.128 Da / Num. of mol.: 20 / Fragment: UNP residues 680-713 / Source method: isolated from a natural source / Source: (natural) ![]() |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: FILAMENT / 3D reconstruction method: helical reconstruction |
-
Sample preparation
Component | Name: Type Ic amyloid-beta 42 / Type: TISSUE / Entity ID: all / Source: NATURAL | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source (natural) | Organism: ![]() | |||||||||||||||
Buffer solution | pH: 7.4 | |||||||||||||||
Buffer component |
| |||||||||||||||
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES | |||||||||||||||
Vitrification | Instrument: GATAN CRYOPLUNGE 3 / Cryogen name: ETHANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Nominal magnification: 81000 X / Nominal defocus max: 2500 nm / Nominal defocus min: 500 nm / Cs: 2.7 mm / C2 aperture diameter: 50 µm |
Specimen holder | Cryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER |
Image recording | Average exposure time: 3.21 sec. / Electron dose: 57.79 e/Å2 / Detector mode: COUNTING / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k) / Num. of grids imaged: 2 / Num. of real images: 23764 |
EM imaging optics | Energyfilter name: GIF Bioquantum / Energyfilter slit width: 20 eV |
Image scans | Sampling size: 5 µm / Width: 5760 / Height: 4092 |
-
Processing
EM software |
| ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||||||||||||||||||||||||||||||
Helical symmerty | Angular rotation/subunit: 179.44 ° / Axial rise/subunit: 2.39 Å / Axial symmetry: C1 | ||||||||||||||||||||||||||||||||||||||||||||
3D reconstruction | Resolution: 2.6 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 30211 / Symmetry type: HELICAL | ||||||||||||||||||||||||||||||||||||||||||||
Atomic model building | Protocol: AB INITIO MODEL / Space: REAL |