[English] 日本語

- PDB-9c5b: AP-3 bound to myristoylated Arf1 (Q71L) and LAMPI on a lipid nano... -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 9c5b | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | AP-3 bound to myristoylated Arf1 (Q71L) and LAMPI on a lipid nanodisc; combined map | ||||||||||||||||||||||||
![]() |
| ||||||||||||||||||||||||
![]() | TRANSPORT PROTEIN / Adaptor Protein complex / AP-3 / Lysosomal transport / Endosomal transport / Protein trafficking | ||||||||||||||||||||||||
Function / homology | ![]() synaptic vesicle coating / synaptic vesicle budding from endosome / establishment of protein localization to mitochondrial membrane involved in mitochondrial fission / clathrin-coated vesicle cargo loading, AP-3-mediated / skin epidermis development / AP-type membrane coat adaptor complex / synaptic vesicle membrane organization / regulation of organelle transport along microtubule / zinc ion import into lysosome / AP-3 adaptor complex ...synaptic vesicle coating / synaptic vesicle budding from endosome / establishment of protein localization to mitochondrial membrane involved in mitochondrial fission / clathrin-coated vesicle cargo loading, AP-3-mediated / skin epidermis development / AP-type membrane coat adaptor complex / synaptic vesicle membrane organization / regulation of organelle transport along microtubule / zinc ion import into lysosome / AP-3 adaptor complex / positive regulation of natural killer cell degranulation / neurotransmitter receptor transport, postsynaptic endosome to lysosome / anterograde synaptic vesicle transport / granzyme-mediated programmed cell death signaling pathway / phagolysosome membrane / microvesicle / Golgi to lysosome transport / endosome to melanosome transport / mitotic cleavage furrow ingression / trans-Golgi Network Vesicle Budding / Golgi to vacuole transport / establishment of protein localization to organelle / cytolytic granule membrane / synaptic vesicle recycling / postsynaptic recycling endosome / presynaptic endosome / clathrin adaptor complex / platelet dense granule organization / Glycosphingolipid transport / regulation of receptor internalization / melanosome assembly / granulocyte differentiation / Intra-Golgi traffic / regulation of Arp2/3 complex-mediated actin nucleation / postsynaptic neurotransmitter receptor internalization / GTP-dependent protein binding / positive regulation of NK T cell differentiation / Synthesis of PIPs at the Golgi membrane / clathrin-coated vesicle membrane / lysosomal lumen acidification / positive regulation of natural killer cell mediated cytotoxicity / antigen processing and presentation, exogenous lipid antigen via MHC class Ib / protein targeting to vacuole / protein targeting to lysosome / melanosome organization / respiratory system process / anterograde axonal transport / Nef Mediated CD4 Down-regulation / intracellular zinc ion homeostasis / dendritic spine organization / protein localization to membrane / protein localization to cell surface / long-term synaptic depression / azurophil granule membrane / lysosome organization / COPI-dependent Golgi-to-ER retrograde traffic / Lysosome Vesicle Biogenesis / toll-like receptor signaling pathway / ion channel inhibitor activity / Golgi Associated Vesicle Biogenesis / cell leading edge / lung morphogenesis / Association of TriC/CCT with target proteins during biosynthesis / Synthesis of PIPs at the plasma membrane / autolysosome / autophagosome membrane / ficolin-1-rich granule membrane / homeostasis of number of cells / intracellular copper ion homeostasis / single fertilization / intracellular transport / hematopoietic progenitor cell differentiation / COPI-mediated anterograde transport / transport vesicle / vesicle-mediated transport / axon cytoplasm / multivesicular body / MHC class II antigen presentation / Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulation / cytoplasmic vesicle membrane / sarcomere / small monomeric GTPase / intracellular protein transport / mRNA transcription by RNA polymerase II / terminal bouton / cell morphogenesis / sarcolemma / protein modification process / small GTPase binding / cellular response to virus / endocytosis / blood coagulation / Signaling by BRAF and RAF1 fusions / late endosome membrane / late endosome / synaptic vesicle / insulin receptor signaling pathway / melanosome / presynapse / virus receptor activity Similarity search - Function | ||||||||||||||||||||||||
Biological species | ![]() | ||||||||||||||||||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 4.5 Å | ||||||||||||||||||||||||
Model details | MODEL GENERATED BY ROSETTA VERSION 2020.08+release.cb1caba | ||||||||||||||||||||||||
![]() | Begley, M.C. / Baker, R.W. | ||||||||||||||||||||||||
Funding support | ![]()
| ||||||||||||||||||||||||
![]() | ![]() Title: A structure-based mechanism for initiation of AP-3 coated vesicle formation. Authors: Matthew Begley / Mahira Aragon / Richard W Baker / ![]() Abstract: Adaptor protein complex-3 (AP-3) mediates cargo sorting from endosomes to lysosomes and lysosome-related organelles. Recently, it was shown that AP-3 adopts a constitutively open conformation ...Adaptor protein complex-3 (AP-3) mediates cargo sorting from endosomes to lysosomes and lysosome-related organelles. Recently, it was shown that AP-3 adopts a constitutively open conformation compared to the related AP-1 and AP-2 coat complexes, which are inactive until undergoing large conformational changes upon membrane recruitment. How AP-3 is regulated is therefore an open question. To understand the mechanism of AP-3 membrane recruitment and activation, we reconstituted human AP-3 and determined multiple structures in the soluble and membrane-bound states using electron cryo-microscopy. Similar to yeast AP-3, human AP-3 is in a constitutively open conformation. To reconstitute AP-3 activation by adenosine di-phosphate (ADP)-ribosylation factor 1 (Arf1), a small guanosine tri-phosphate (GTP)ase, we used lipid nanodiscs to build Arf1-AP-3 complexes on membranes and determined three structures showing the stepwise conformational changes required for formation of AP-3 coated vesicles. First, membrane recruitment is driven by one of two predicted Arf1 binding sites, which flexibly tethers AP-3 to the membrane. Second, cargo binding causes AP-3 to adopt a fixed position and rigidifies the complex, which stabilizes binding for a second Arf1 molecule. Finally, binding of the second Arf1 molecule provides the template for AP-3 dimerization, providing a glimpse into the first step of coat polymerization. We propose coat polymerization only occurs after cargo engagement, thereby linking cargo sorting with assembly of higher-order coat structures. Additionally, we provide evidence for two amphipathic helices in AP-3, suggesting that AP-3 contributes to membrane deformation during coat assembly. In total, these data provide evidence for the first stages of AP-3-mediated vesicle coat assembly. | ||||||||||||||||||||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 382.7 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 306 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Arichive directory | ![]() ![]() | HTTPS FTP |
---|
-Related structure data
Related structure data | ![]() 45213MC ![]() 9c58C ![]() 9c59C ![]() 9c5aC ![]() 9c5cC M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
-AP-3 complex subunit ... , 4 types, 4 molecules DMSB
#2: Protein | Mass: 69381.977 Da / Num. of mol.: 1 / Fragment: residues 1-617 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
---|---|
#3: Protein | Mass: 46989.965 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
#4: Protein | Mass: 21755.061 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
#6: Protein | Mass: 76499.609 Da / Num. of mol.: 1 / Fragment: residues 1-677 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
-Protein / Protein/peptide , 2 types, 3 molecules ACY
#1: Protein | Mass: 20775.812 Da / Num. of mol.: 2 / Mutation: Q71L Source method: isolated from a genetically manipulated source Details: Q to L mutation at position 71 / Source: (gene. exp.) ![]() ![]() ![]() #5: Protein/peptide | | Mass: 1377.553 Da / Num. of mol.: 1 / Source method: obtained synthetically / Details: Synthetic peptide with an oleic acid conjugation / Source: (synth.) ![]() |
---|
-Non-polymers , 2 types, 4 molecules 


#7: Chemical | #8: Chemical | |
---|
-Details
Has ligand of interest | Y |
---|---|
Has protein modification | N |
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component | Name: AP-3 bound to myristoylated Arf1 (Q71L) and LAMPI on a lipid nanodisc; combined map Type: COMPLEX / Entity ID: #1-#6 / Source: MULTIPLE SOURCES | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Molecular weight | Value: 0.215 MDa / Experimental value: NO | ||||||||||||||||||||||||||||||
Buffer solution | pH: 7.4 / Details: 1x PBS (pH 7.4), 300mM NaCl, 1mM TCEP | ||||||||||||||||||||||||||||||
Buffer component |
| ||||||||||||||||||||||||||||||
Specimen | Conc.: 1.5 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES Details: Specimen appeared as a monodisperse peak via size exclusion chromatography (SEC) | ||||||||||||||||||||||||||||||
Specimen support | Details: Used Quantifoil Active grids - backside gold coated before plasma cleaning. 12 mA used for plasma cleaning. Grid material: COPPER / Grid mesh size: 300 divisions/in. / Grid type: Quantifoil R1.2/1.3 | ||||||||||||||||||||||||||||||
Vitrification | Instrument: SPOTITON / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 296 K / Details: Commercialized version - chameleon |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Nominal magnification: 81000 X / Nominal defocus max: 1400 nm / Nominal defocus min: 400 nm / Cs: 2.7 mm / Alignment procedure: COMA FREE |
Specimen holder | Cryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER |
Image recording | Electron dose: 53.4 e/Å2 / Film or detector model: FEI FALCON IV (4k x 4k) Details: 2 datasets collected, processed independently, and merged. |
EM imaging optics | Energyfilter name: TFS Selectris / Energyfilter slit width: 20 eV |
-
Processing
EM software |
| ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||||||||||||||||||||||||||||||
Particle selection | Details: Mixture of blob picker, template picker, crYOLO, and Topaz | ||||||||||||||||||||||||||||||||||||||||||||
Symmetry | Point symmetry: C1 (asymmetric) | ||||||||||||||||||||||||||||||||||||||||||||
3D reconstruction | Resolution: 4.5 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 176749 Details: Non-Uniform refinement in cryoSPARC. Map is a composite map of two focused refinements, combined using phenix.combine_focused_maps. Symmetry type: POINT | ||||||||||||||||||||||||||||||||||||||||||||
Atomic model building | Protocol: RIGID BODY FIT / Space: REAL | ||||||||||||||||||||||||||||||||||||||||||||
Atomic model building | Source name: AlphaFold / Type: in silico model |