[English] 日本語
Yorodumi
- PDB-8oop: CryoEM Structure INO80core Hexasome complex composite model state2 -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8oop
TitleCryoEM Structure INO80core Hexasome complex composite model state2
Components
  • (Chromatin-remodeling ...) x 2
  • (RuvB-like protein ...) x 2
  • Actin-related protein 5
  • DNA Strand 2
  • DNA strand 1
  • Histone H2A
  • Histone H2B
  • Histone H3.1
  • Histone H4
  • Ino eighty subunit 2
KeywordsDNA BINDING PROTEIN / ATP-dependent chromatin remodeler
Function / homology
Function and homology information


DASH complex / protein transport along microtubule to mitotic spindle pole body / mitotic sister chromatid biorientation / attachment of spindle microtubules to kinetochore / attachment of mitotic spindle microtubules to kinetochore / Ino80 complex / negative regulation of megakaryocyte differentiation / ATP-dependent activity, acting on DNA / protein localization to CENP-A containing chromatin / Chromatin modifying enzymes ...DASH complex / protein transport along microtubule to mitotic spindle pole body / mitotic sister chromatid biorientation / attachment of spindle microtubules to kinetochore / attachment of mitotic spindle microtubules to kinetochore / Ino80 complex / negative regulation of megakaryocyte differentiation / ATP-dependent activity, acting on DNA / protein localization to CENP-A containing chromatin / Chromatin modifying enzymes / Replacement of protamines by nucleosomes in the male pronucleus / CENP-A containing nucleosome / Packaging Of Telomere Ends / Recognition and association of DNA glycosylase with site containing an affected purine / Cleavage of the damaged purine / Deposition of new CENPA-containing nucleosomes at the centromere / nucleosomal DNA binding / Recognition and association of DNA glycosylase with site containing an affected pyrimidine / Cleavage of the damaged pyrimidine / Inhibition of DNA recombination at telomere / telomere organization / Meiotic synapsis / Interleukin-7 signaling / RNA Polymerase I Promoter Opening / epigenetic regulation of gene expression / Assembly of the ORC complex at the origin of replication / SUMOylation of chromatin organization proteins / Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex / DNA methylation / Condensation of Prophase Chromosomes / SIRT1 negatively regulates rRNA expression / Chromatin modifications during the maternal to zygotic transition (MZT) / ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression / HCMV Late Events / innate immune response in mucosa / PRC2 methylates histones and DNA / Regulation of endogenous retroelements by KRAB-ZFP proteins / Defective pyroptosis / Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) / HDACs deacetylate histones / Nonhomologous End-Joining (NHEJ) / helicase activity / RNA Polymerase I Promoter Escape / Transcriptional regulation by small RNAs / Formation of the beta-catenin:TCF transactivating complex / RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function / NoRC negatively regulates rRNA expression / Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 / G2/M DNA damage checkpoint / HDMs demethylate histones / B-WICH complex positively regulates rRNA expression / DNA Damage/Telomere Stress Induced Senescence / heterochromatin formation / mitotic spindle / PKMTs methylate histone lysines / Metalloprotease DUBs / Meiotic recombination / kinetochore / Pre-NOTCH Transcription and Translation / RMTs methylate histone arginines / Activation of anterior HOX genes in hindbrain development during early embryogenesis / HCMV Early Events / Transcriptional regulation of granulopoiesis / structural constituent of chromatin / UCH proteinases / antimicrobial humoral immune response mediated by antimicrobial peptide / nucleosome / nucleosome assembly / E3 ubiquitin ligases ubiquitinate target proteins / antibacterial humoral response / Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at DNA double strand breaks / chromatin organization / RUNX1 regulates transcription of genes involved in differentiation of HSCs / Factors involved in megakaryocyte development and platelet production / HATs acetylate histones / Processing of DNA double-strand break ends / gene expression / Senescence-Associated Secretory Phenotype (SASP) / DNA helicase / Oxidative Stress Induced Senescence / Estrogen-dependent gene expression / chromosome, telomeric region / Ub-specific processing proteases / defense response to Gram-positive bacterium / cadherin binding / chromatin remodeling / protein heterodimerization activity / Amyloid fiber formation / negative regulation of cell population proliferation / DNA repair / ATP hydrolysis activity / protein-containing complex / DNA binding / RNA binding / extracellular space / extracellular exosome / extracellular region / nucleoplasm / ATP binding / identical protein binding
Similarity search - Function
DASH complex subunit Dad4 / DASH complex subunit Dad4 / INO80 complex subunit B-like conserved region / INO80 complex, subunit Ies2 / INO80 complex, subunit Ies6 / PAPA-1-like conserved region / PAPA-1 / Vps72/YL1, C-terminal / YL1 nuclear protein C-terminal domain / YL1 nuclear protein C-terminal domain ...DASH complex subunit Dad4 / DASH complex subunit Dad4 / INO80 complex subunit B-like conserved region / INO80 complex, subunit Ies2 / INO80 complex, subunit Ies6 / PAPA-1-like conserved region / PAPA-1 / Vps72/YL1, C-terminal / YL1 nuclear protein C-terminal domain / YL1 nuclear protein C-terminal domain / RuvB-like / RuvB-like, AAA-lid domain / RuvBL1/2, DNA/RNA binding domain / TIP49 P-loop domain / TIP49 AAA-lid domain / TIP49, P-loop domain / Actin / Actin family / Actin / Histone H2B signature. / Histone H2B / Histone H2B / Histone H2A conserved site / Histone H2A signature. / Histone H2A, C-terminal domain / C-terminus of histone H2A / Histone H4, conserved site / Histone H4 signature. / Histone H4 / Histone H4 / Histone H2A / Histone 2A / CENP-T/Histone H4, histone fold / Centromere kinetochore component CENP-T histone fold / TATA box binding protein associated factor / TATA box binding protein associated factor (TAF), histone-like fold domain / Histone H3 signature 1. / Histone H3 signature 2. / Histone H3 / Histone H3/CENP-A / ATPase, nucleotide binding domain / Histone H2A/H2B/H3 / Core histone H2A/H2B/H3/H4 / Histone-fold / ATPases associated with a variety of cellular activities / AAA+ ATPase domain / P-loop containing nucleoside triphosphate hydrolase
Similarity search - Domain/homology
ADENOSINE-5'-DIPHOSPHATE / TETRAFLUOROALUMINATE ION / ADENOSINE-5'-TRIPHOSPHATE / DNA / DNA (> 10) / DNA (> 100) / INO80 complex subunit B-like conserved region domain-containing protein / RuvB-like helicase / RuvB-like helicase / Uncharacterized protein ...ADENOSINE-5'-DIPHOSPHATE / TETRAFLUOROALUMINATE ION / ADENOSINE-5'-TRIPHOSPHATE / DNA / DNA (> 10) / DNA (> 100) / INO80 complex subunit B-like conserved region domain-containing protein / RuvB-like helicase / RuvB-like helicase / Uncharacterized protein / Vps72/YL1 C-terminal domain-containing protein / Histone H4 / Histone H2B type 1-C/E/F/G/I / Histone H3.1 / Histone H2A type 1-C
Similarity search - Component
Biological speciesThermochaetoides thermophila (fungus)
Homo sapiens (human)
synthetic construct (others)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.7 Å
AuthorsZhang, M. / Jungblut, A. / Hoffmann, T. / Eustermann, S.
Funding support Germany, European Union, 4items
OrganizationGrant numberCountry
EIPOD fellowship under Marie Sklodowska-Curie Actions COFUND847543 Germany
European Research Council (ERC)833613European Union
German Research Foundation (DFG)CRC136 Germany
German Research Foundation (DFG)CRC1064 Germany
Citation
Journal: Science / Year: 2023
Title: Hexasome-INO80 complex reveals structural basis of noncanonical nucleosome remodeling.
Authors: Min Zhang / Anna Jungblut / Franziska Kunert / Luis Hauptmann / Thomas Hoffmann / Olga Kolesnikova / Felix Metzner / Manuela Moldt / Felix Weis / Frank DiMaio / Karl-Peter Hopfner / Sebastian Eustermann /
Abstract: Loss of H2A-H2B histone dimers is a hallmark of actively transcribed genes, but how the cellular machinery functions in the context of noncanonical nucleosomal particles remains largely elusive. In ...Loss of H2A-H2B histone dimers is a hallmark of actively transcribed genes, but how the cellular machinery functions in the context of noncanonical nucleosomal particles remains largely elusive. In this work, we report the structural mechanism for adenosine 5'-triphosphate-dependent chromatin remodeling of hexasomes by the INO80 complex. We show how INO80 recognizes noncanonical DNA and histone features of hexasomes that emerge from the loss of H2A-H2B. A large structural rearrangement switches the catalytic core of INO80 into a distinct, spin-rotated mode of remodeling while its nuclear actin module remains tethered to long stretches of unwrapped linker DNA. Direct sensing of an exposed H3-H4 histone interface activates INO80, independently of the H2A-H2B acidic patch. Our findings reveal how the loss of H2A-H2B grants remodelers access to a different, yet unexplored layer of energy-driven chromatin regulation.
#1: Journal: Acta Crystallogr D Struct Biol / Year: 2018
Title: Real-space refinement in PHENIX for cryo-EM and crystallography.
Authors: Pavel V Afonine / Billy K Poon / Randy J Read / Oleg V Sobolev / Thomas C Terwilliger / Alexandre Urzhumtsev / Paul D Adams /
Abstract: This article describes the implementation of real-space refinement in the phenix.real_space_refine program from the PHENIX suite. The use of a simplified refinement target function enables very fast ...This article describes the implementation of real-space refinement in the phenix.real_space_refine program from the PHENIX suite. The use of a simplified refinement target function enables very fast calculation, which in turn makes it possible to identify optimal data-restraint weights as part of routine refinements with little runtime cost. Refinement of atomic models against low-resolution data benefits from the inclusion of as much additional information as is available. In addition to standard restraints on covalent geometry, phenix.real_space_refine makes use of extra information such as secondary-structure and rotamer-specific restraints, as well as restraints or constraints on internal molecular symmetry. The re-refinement of 385 cryo-EM-derived models available in the Protein Data Bank at resolutions of 6 Å or better shows significant improvement of the models and of the fit of these models to the target maps.
#2: Journal: Biochem J / Year: 2021
Title: New tools for automated cryo-EM single-particle analysis in RELION-4.0.
Authors: Dari Kimanius / Liyi Dong / Grigory Sharov / Takanori Nakane / Sjors H W Scheres /
Abstract: We describe new tools for the processing of electron cryo-microscopy (cryo-EM) images in the fourth major release of the RELION software. In particular, we introduce VDAM, a variable-metric gradient ...We describe new tools for the processing of electron cryo-microscopy (cryo-EM) images in the fourth major release of the RELION software. In particular, we introduce VDAM, a variable-metric gradient descent algorithm with adaptive moments estimation, for image refinement; a convolutional neural network for unsupervised selection of 2D classes; and a flexible framework for the design and execution of multiple jobs in pre-defined workflows. In addition, we present a stand-alone utility called MDCatch that links the execution of jobs within this framework with metadata gathering during microscope data acquisition. The new tools are aimed at providing fast and robust procedures for unsupervised cryo-EM structure determination, with potential applications for on-the-fly processing and the development of flexible, high-throughput structure determination pipelines. We illustrate their potential on 12 publicly available cryo-EM data sets.
#3: Journal: Acta Crystallogr D Struct Biol / Year: 2018
Title: ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps.
Authors: Tristan Ian Croll /
Abstract: This paper introduces ISOLDE, a new software package designed to provide an intuitive environment for high-fidelity interactive remodelling/refinement of macromolecular models into electron-density ...This paper introduces ISOLDE, a new software package designed to provide an intuitive environment for high-fidelity interactive remodelling/refinement of macromolecular models into electron-density maps. ISOLDE combines interactive molecular-dynamics flexible fitting with modern molecular-graphics visualization and established structural biology libraries to provide an immersive interface wherein the model constantly acts to maintain physically realistic conformations as the user interacts with it by directly tugging atoms with a mouse or haptic interface or applying/removing restraints. In addition, common validation tasks are accelerated and visualized in real time. Using the recently described 3.8 Å resolution cryo-EM structure of the eukaryotic minichromosome maintenance (MCM) helicase complex as a case study, it is demonstrated how ISOLDE can be used alongside other modern refinement tools to avoid common pitfalls of low-resolution modelling and improve the quality of the final model. A detailed analysis of changes between the initial and final model provides a somewhat sobering insight into the dangers of relying on a small number of validation metrics to judge the quality of a low-resolution model.
#4: Journal: Acta Crystallogr D Biol Crystallogr / Year: 2010
Title: Features and development of Coot.
Authors: P Emsley / B Lohkamp / W G Scott / K Cowtan /
Abstract: Coot is a molecular-graphics application for model building and validation of biological macromolecules. The program displays electron-density maps and atomic models and allows model manipulations ...Coot is a molecular-graphics application for model building and validation of biological macromolecules. The program displays electron-density maps and atomic models and allows model manipulations such as idealization, real-space refinement, manual rotation/translation, rigid-body fitting, ligand search, solvation, mutations, rotamers and Ramachandran idealization. Furthermore, tools are provided for model validation as well as interfaces to external programs for refinement, validation and graphics. The software is designed to be easy to learn for novice users, which is achieved by ensuring that tools for common tasks are 'discoverable' through familiar user-interface elements (menus and toolbars) or by intuitive behaviour (mouse controls). Recent developments have focused on providing tools for expert users, with customisable key bindings, extensions and an extensive scripting interface. The software is under rapid development, but has already achieved very widespread use within the crystallographic community. The current state of the software is presented, with a description of the facilities available and of some of the underlying methods employed.
History
DepositionApr 5, 2023Deposition site: PDBE / Processing site: PDBE
Revision 1.0Jul 26, 2023Provider: repository / Type: Initial release
Revision 1.1Aug 2, 2023Group: Database references / Category: citation / citation_author
Item: _citation.journal_volume / _citation.page_first ..._citation.journal_volume / _citation.page_first / _citation.page_last / _citation_author.identifier_ORCID
Revision 1.2Jul 24, 2024Group: Data collection / Refinement description
Category: chem_comp_atom / chem_comp_bond ...chem_comp_atom / chem_comp_bond / em_3d_fitting_list / em_admin
Item: _em_3d_fitting_list.initial_refinement_model_id / _em_admin.last_update

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: RuvB-like protein 1
B: RuvB-like protein 1
C: RuvB-like protein 1
D: RuvB-like protein 2
E: RuvB-like protein 2
F: RuvB-like protein 2
G: Chromatin-remodeling ATPase Ino80
H: Ino eighty subunit 2
I: Chromatin-remodeling complex subunit IES6
J: Actin-related protein 5
K: DNA strand 1
L: DNA Strand 2
M: Histone H3.1
N: Histone H4
O: Histone H2A
P: Histone H2B
Q: Histone H3.1
R: Histone H4
hetero molecules


Theoretical massNumber of molelcules
Total (without water)830,29729
Polymers826,64818
Non-polymers3,64911
Water00
1


  • Idetical with deposited unit
  • defined by author&software
  • Evidence: mass spectrometry
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1

-
Components

-
RuvB-like protein ... , 2 types, 6 molecules ABCDEF

#1: Protein RuvB-like protein 1 / Rvb1


Mass: 50451.848 Da / Num. of mol.: 3
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Thermochaetoides thermophila (fungus) / Gene: CTHT_0006820 / Production host: Trichoplusia ni (cabbage looper) / References: UniProt: G0RYI5, DNA helicase
#2: Protein RuvB-like protein 2 / Rvb2


Mass: 53212.746 Da / Num. of mol.: 3
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Thermochaetoides thermophila (fungus) / Gene: CTHT_0006170 / Production host: Trichoplusia ni (cabbage looper) / References: UniProt: G0RYC2, DNA helicase

-
Chromatin-remodeling ... , 2 types, 2 molecules GI

#3: Protein Chromatin-remodeling ATPase Ino80


Mass: 130887.656 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Thermochaetoides thermophila (fungus) / Production host: Trichoplusia ni (cabbage looper)
#5: Protein Chromatin-remodeling complex subunit IES6


Mass: 23127.523 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Thermochaetoides thermophila (fungus) / Gene: CTHT_0032670 / Production host: Trichoplusia ni (cabbage looper) / References: UniProt: G0S590

-
Protein , 6 types, 8 molecules HJMQNROP

#4: Protein Ino eighty subunit 2


Mass: 53345.980 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Thermochaetoides thermophila (fungus) / Gene: CTHT_0004910 / Production host: Trichoplusia ni (cabbage looper) / References: UniProt: G0RY01
#6: Protein Actin-related protein 5 / Outer kinetochore protein DAD4


Mass: 87773.086 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Thermochaetoides thermophila (fungus) / Gene: CTHT_0032660 / Production host: Trichoplusia ni (cabbage looper) / References: UniProt: G0S589
#9: Protein Histone H3.1 / Histone H3/a / Histone H3/b / Histone H3/c / Histone H3/d / Histone H3/f / Histone H3/h / Histone ...Histone H3/a / Histone H3/b / Histone H3/c / Histone H3/d / Histone H3/f / Histone H3/h / Histone H3/i / Histone H3/j / Histone H3/k / Histone H3/l


Mass: 15305.969 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human)
Gene: H3C1, H3FA, HIST1H3A, H3C2, H3FL, HIST1H3B, H3C3, H3FC HIST1H3C, H3C4, H3FB, HIST1H3D, H3C6, H3FD, HIST1H3E, H3C7, H3FI, HIST1H3F, H3C8, H3FH, HIST1H3G, H3C10, H3FK, HIST1H3H, H3C11, H3FF, ...Gene: H3C1, H3FA, HIST1H3A, H3C2, H3FL, HIST1H3B, H3C3, H3FC HIST1H3C, H3C4, H3FB, HIST1H3D, H3C6, H3FD, HIST1H3E, H3C7, H3FI, HIST1H3F, H3C8, H3FH, HIST1H3G, H3C10, H3FK, HIST1H3H, H3C11, H3FF, HIST1H3I, H3C12, H3FJ, HIST1H3J
Production host: Escherichia coli (E. coli) / References: UniProt: P68431
#10: Protein Histone H4


Mass: 11263.231 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human)
Gene: HIST1H4A, H4/A, H4FA, HIST1H4B, H4/I, H4FI, HIST1H4C, H4/G, H4FG, HIST1H4D, H4/B, H4FB, HIST1H4E, H4/J, H4FJ, HIST1H4F, H4/C, H4FC, HIST1H4H, H4/H, H4FH, HIST1H4I, H4/M, H4FM, HIST1H4J, H4/E, ...Gene: HIST1H4A, H4/A, H4FA, HIST1H4B, H4/I, H4FI, HIST1H4C, H4/G, H4FG, HIST1H4D, H4/B, H4FB, HIST1H4E, H4/J, H4FJ, HIST1H4F, H4/C, H4FC, HIST1H4H, H4/H, H4FH, HIST1H4I, H4/M, H4FM, HIST1H4J, H4/E, H4FE, HIST1H4K, H4/D, H4FD, HIST1H4L, H4/K, H4FK, HIST2H4A, H4/N, H4F2, H4FN, HIST2H4, HIST2H4B, H4/O, H4FO, HIST4H4
Production host: Escherichia coli (E. coli) / References: UniProt: P62805
#11: Protein Histone H2A / H2A-clustered histone 6 / Histone H2A/l


Mass: 14004.329 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: H2AC6, H2AFL, HIST1H2AC / Production host: Escherichia coli (E. coli) / References: UniProt: Q93077
#12: Protein Histone H2B / Histone H2B.1 A / Histone H2B.a / H2B/a / Histone H2B.g / H2B/g / Histone H2B.h / H2B/h / Histone ...Histone H2B.1 A / Histone H2B.a / H2B/a / Histone H2B.g / H2B/g / Histone H2B.h / H2B/h / Histone H2B.k / H2B/k / Histone H2B.l / H2B/l


Mass: 13806.018 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human)
Gene: HIST1H2BC, H2BFL, HIST1H2BE, H2BFH, HIST1H2BF, H2BFG, HIST1H2BG, H2BFA, HIST1H2BI, H2BFK
Production host: Escherichia coli (E. coli) / References: UniProt: P62807

-
DNA chain , 2 types, 2 molecules KL

#7: DNA chain DNA strand 1


Mass: 69527.195 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) synthetic construct (others)
#8: DNA chain DNA Strand 2


Mass: 70043.562 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) synthetic construct (others)

-
Non-polymers , 4 types, 11 molecules

#13: Chemical
ChemComp-ADP / ADENOSINE-5'-DIPHOSPHATE


Mass: 427.201 Da / Num. of mol.: 7 / Source method: obtained synthetically / Formula: C10H15N5O10P2 / Feature type: SUBJECT OF INVESTIGATION / Comment: ADP, energy-carrying molecule*YM
#14: Chemical ChemComp-MG / MAGNESIUM ION


Mass: 24.305 Da / Num. of mol.: 2 / Source method: obtained synthetically / Formula: Mg / Feature type: SUBJECT OF INVESTIGATION
#15: Chemical ChemComp-ALF / TETRAFLUOROALUMINATE ION


Mass: 102.975 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: AlF4 / Feature type: SUBJECT OF INVESTIGATION
#16: Chemical ChemComp-ATP / ADENOSINE-5'-TRIPHOSPHATE


Mass: 507.181 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: C10H16N5O13P3 / Feature type: SUBJECT OF INVESTIGATION / Comment: ATP, energy-carrying molecule*YM

-
Details

Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

Component
IDNameTypeDetailsEntity IDParent-IDSource
1INO80 core module in complex with hexasomeCOMPLEX11-subunit ct INO80 contains two modules (core and Arp8 module) Each module was picked and analyzed separately The core module + hexasome has an overall weight of 0.861MDa The 11-subunit ct INO80 + hexasome has an overall weight of 1.1MDa Ino80, Ies2, Ies6, Ies4,Arp6, Rvb1, Rvb2, Arp8, Arp4, Actin, Taf14 Hexasome DNA, 2xH3, 2xH4, H2A, H2B#1-#120MULTIPLE SOURCES
2Chromatin remodeler INO80COMPLEX#1-#61RECOMBINANT
3HistonesCOMPLEX#9-#121RECOMBINANT
4DNACOMPLEX#7-#81RECOMBINANT
Molecular weightValue: 0.861 MDa / Experimental value: NO
Source (natural)
IDEntity assembly-IDOrganismNcbi tax-ID
22Thermochaetoides thermophila (fungus)209285
33Homo sapiens (human)9606
44Synthetic construct (others)32630
Source (recombinant)
IDEntity assembly-IDOrganismNcbi tax-ID
22Trichoplusia ni (cabbage looper)7111
33Escherichia coli (E. coli)562
44Synthetic construct (others)32630
Buffer solutionpH: 7.5
Details: 30mM HEPES, pH7.5 50mM NaCl 0.25mM CaCl2 0.25mM DTT 2mM ADP 3.3mM MgCl2 10mM NaF 2mM AlCl3 0.05% octyl-beta-glucoside
SpecimenConc.: 0.88 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES / Details: 11-subunit ctINO80 reconstituted with hexasome
Specimen supportDetails: 10% Oxygene 90% Argon / Grid material: COPPER / Grid mesh size: 200 divisions/in. / Grid type: Quantifoil R2/1
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 281 K
Details: wait time of 5s, blot force at 3, and a blot time of 2s with Whatman blotting paper (Cytiva, CAT No. 10311807)

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal defocus max: 2000 nm / Nominal defocus min: 800 nm / Alignment procedure: COMA FREE
Specimen holderCryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER
Image recordingElectron dose: 50.36 e/Å2 / Film or detector model: GATAN K3 (6k x 4k) / Num. of real images: 15384

-
Processing

EM software
IDNameVersionCategory
2SerialEMimage acquisition
4CTFFIND4.1.14CTF correction
7ISOLDE1.4model fitting
8Coot0.9.7model fitting
10PHENIX1.20.1model refinement
11RELION4initial Euler assignment
14RELION43D reconstruction
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
Particle selectionNum. of particles selected: 2137460
Details: Particles were initially picked by WARP to generate an initial model, which was subsequently used for the 3D template picking
3D reconstructionResolution: 2.7 Å / Resolution method: OTHER / Num. of particles: 98967 / Symmetry type: POINT
Atomic model buildingProtocol: OTHER
Atomic model building
IDPDB-ID 3D fitting-IDAccession codeInitial refinement model-IDSource nameType
16FML16FML1PDBexperimental model
27OHC17OHC2PDBexperimental model
38A5Q18A5Q3PDBexperimental model

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more