[English] 日本語

- PDB-7md4: Insulin receptor ectodomain dimer complexed with two IRPA-3 parti... -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 7md4 | ||||||
---|---|---|---|---|---|---|---|
Title | Insulin receptor ectodomain dimer complexed with two IRPA-3 partial agonists | ||||||
![]() |
| ||||||
![]() | PEPTIDE BINDING PROTEIN / Insulin receptor | ||||||
Function / homology | ![]() regulation of female gonad development / positive regulation of meiotic cell cycle / insulin-like growth factor II binding / positive regulation of developmental growth / male sex determination / insulin receptor complex / insulin-like growth factor I binding / exocrine pancreas development / positive regulation of protein-containing complex disassembly / dendritic spine maintenance ...regulation of female gonad development / positive regulation of meiotic cell cycle / insulin-like growth factor II binding / positive regulation of developmental growth / male sex determination / insulin receptor complex / insulin-like growth factor I binding / exocrine pancreas development / positive regulation of protein-containing complex disassembly / dendritic spine maintenance / cargo receptor activity / insulin binding / negative regulation of NAD(P)H oxidase activity / neuronal cell body membrane / adrenal gland development / PTB domain binding / negative regulation of glycogen catabolic process / positive regulation of nitric oxide mediated signal transduction / negative regulation of fatty acid metabolic process / Signaling by Insulin receptor / negative regulation of feeding behavior / IRS activation / Insulin processing / regulation of protein secretion / positive regulation of peptide hormone secretion / positive regulation of respiratory burst / amyloid-beta clearance / Regulation of gene expression in beta cells / negative regulation of acute inflammatory response / positive regulation of protein autophosphorylation / regulation of embryonic development / alpha-beta T cell activation / positive regulation of receptor internalization / protein kinase activator activity / insulin receptor substrate binding / positive regulation of dendritic spine maintenance / Synthesis, secretion, and deacylation of Ghrelin / negative regulation of respiratory burst involved in inflammatory response / epidermis development / negative regulation of protein secretion / negative regulation of gluconeogenesis / positive regulation of glycogen biosynthetic process / Signal attenuation / fatty acid homeostasis / phosphatidylinositol 3-kinase binding / FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes / positive regulation of insulin receptor signaling pathway / negative regulation of lipid catabolic process / transport across blood-brain barrier / regulation of protein localization to plasma membrane / positive regulation of lipid biosynthetic process / heart morphogenesis / negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway / activation of protein kinase B activity / COPI-mediated anterograde transport / transport vesicle / nitric oxide-cGMP-mediated signaling / negative regulation of reactive oxygen species biosynthetic process / Insulin receptor recycling / insulin-like growth factor receptor binding / positive regulation of brown fat cell differentiation / dendrite membrane / NPAS4 regulates expression of target genes / neuron projection maintenance / endoplasmic reticulum-Golgi intermediate compartment membrane / positive regulation of MAP kinase activity / positive regulation of nitric-oxide synthase activity / positive regulation of mitotic nuclear division / Insulin receptor signalling cascade / receptor-mediated endocytosis / regulation of transmembrane transporter activity / positive regulation of glycolytic process / learning / positive regulation of long-term synaptic potentiation / positive regulation of cytokine production / endosome lumen / acute-phase response / positive regulation of D-glucose import / positive regulation of protein secretion / positive regulation of cell differentiation / Regulation of insulin secretion / insulin receptor binding / wound healing / placental growth factor receptor activity / insulin receptor activity / vascular endothelial growth factor receptor activity / hepatocyte growth factor receptor activity / macrophage colony-stimulating factor receptor activity / platelet-derived growth factor alpha-receptor activity / platelet-derived growth factor beta-receptor activity / stem cell factor receptor activity / boss receptor activity / protein tyrosine kinase collagen receptor activity / brain-derived neurotrophic factor receptor activity / transmembrane-ephrin receptor activity / GPI-linked ephrin receptor activity / epidermal growth factor receptor activity / fibroblast growth factor receptor activity / insulin-like growth factor receptor activity / receptor protein-tyrosine kinase Similarity search - Function | ||||||
Biological species | ![]() | ||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 4.5 Å | ||||||
![]() | Gomez-Llorente, Y. / Zhou, H. / Scapin, G. | ||||||
![]() | ![]() Title: Functionally selective signaling and broad metabolic benefits by novel insulin receptor partial agonists. Authors: Margaret Wu / Ester Carballo-Jane / Haihong Zhou / Peter Zafian / Ge Dai / Mindy Liu / Julie Lao / Terri Kelly / Dan Shao / Judith Gorski / Dmitri Pissarnitski / Ahmet Kekec / Ying Chen / ...Authors: Margaret Wu / Ester Carballo-Jane / Haihong Zhou / Peter Zafian / Ge Dai / Mindy Liu / Julie Lao / Terri Kelly / Dan Shao / Judith Gorski / Dmitri Pissarnitski / Ahmet Kekec / Ying Chen / Stephen F Previs / Giovanna Scapin / Yacob Gomez-Llorente / Scott A Hollingsworth / Lin Yan / Danqing Feng / Pei Huo / Geoffrey Walford / Mark D Erion / David E Kelley / Songnian Lin / James Mu / ![]() Abstract: Insulin analogs have been developed to treat diabetes with focus primarily on improving the time action profile without affecting ligand-receptor interaction or functional selectivity. As a result, ...Insulin analogs have been developed to treat diabetes with focus primarily on improving the time action profile without affecting ligand-receptor interaction or functional selectivity. As a result, inherent liabilities (e.g. hypoglycemia) of injectable insulin continue to limit the true therapeutic potential of related agents. Insulin dimers were synthesized to investigate whether partial agonism of the insulin receptor (IR) tyrosine kinase is achievable, and to explore the potential for tissue-selective systemic insulin pharmacology. The insulin dimers induced distinct IR conformational changes compared to native monomeric insulin and substrate phosphorylation assays demonstrated partial agonism. Structurally distinct dimers with differences in conjugation sites and linkers were prepared to deliver desirable IR partial agonist (IRPA). Systemic infusions of a B29-B29 dimer in vivo revealed sharp differences compared to native insulin. Suppression of hepatic glucose production and lipolysis were like that attained with regular insulin, albeit with a distinctly shallower dose-response. In contrast, there was highly attenuated stimulation of glucose uptake into muscle. Mechanistic studies indicated that IRPAs exploit tissue differences in receptor density and have additional distinctions pertaining to drug clearance and distribution. The hepato-adipose selective action of IRPAs is a potentially safer approach for treatment of diabetes. | ||||||
History |
|
-
Structure visualization
Movie |
![]() |
---|---|
Structure viewer | Molecule: ![]() ![]() |
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 320.6 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 258.5 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Arichive directory | ![]() ![]() | HTTPS FTP |
---|
-Related structure data
Related structure data | ![]() 23766MC ![]() 7md5C M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
#1: Protein/peptide | Mass: 3459.836 Da / Num. of mol.: 2 / Fragment: C-terminal helix Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() #2: Protein | Mass: 106143.359 Da / Num. of mol.: 2 / Fragment: extracellular domain Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() #3: Protein/peptide | Mass: 2383.698 Da / Num. of mol.: 4 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() #4: Protein/peptide | Mass: 3433.953 Da / Num. of mol.: 4 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() Has protein modification | Y | |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component |
| ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Molecular weight | Value: 0.23 MDa / Experimental value: YES | ||||||||||||||||||||||||
Source (natural) |
| ||||||||||||||||||||||||
Source (recombinant) |
| ||||||||||||||||||||||||
Buffer solution | pH: 7.4 | ||||||||||||||||||||||||
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES | ||||||||||||||||||||||||
Specimen support | Grid material: COPPER / Grid type: Homemade | ||||||||||||||||||||||||
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Cs: 2.7 mm / Alignment procedure: COMA FREE |
Specimen holder | Cryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER |
Image recording | Electron dose: 45 e/Å2 / Detector mode: COUNTING / Film or detector model: GATAN K2 SUMMIT (4k x 4k) |
-
Processing
EM software | Name: Leginon / Category: image acquisition |
---|---|
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION |
3D reconstruction | Resolution: 4.5 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 92327 / Symmetry type: POINT |