[English] 日本語
Yorodumi
- PDB-7ky6: Structure of the S. cerevisiae phosphatidylcholine flippase Dnf1-... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7ky6
TitleStructure of the S. cerevisiae phosphatidylcholine flippase Dnf1-Lem3 complex in the apo E1 state
Components
  • Alkylphosphocholine resistance protein LEM3
  • Phospholipid-transporting ATPase DNF1
KeywordsTRANSLOCASE / P4 ATPase / Phosphatidylcholine Flippases
Function / homology
Function and homology information


glycosylceramide flippase activity / mating projection tip membrane / phosphatidylcholine flippase activity / phosphatidylserine flippase activity / phosphatidylserine floppase activity / phospholipid-translocating ATPase complex / ATPase-coupled intramembrane lipid transporter activity / phosphatidylcholine floppase activity / phosphatidylethanolamine flippase activity / cell septum ...glycosylceramide flippase activity / mating projection tip membrane / phosphatidylcholine flippase activity / phosphatidylserine flippase activity / phosphatidylserine floppase activity / phospholipid-translocating ATPase complex / ATPase-coupled intramembrane lipid transporter activity / phosphatidylcholine floppase activity / phosphatidylethanolamine flippase activity / cell septum / cellular bud neck / P-type phospholipid transporter / phospholipid translocation / establishment or maintenance of cell polarity / cell periphery / intracellular protein transport / endocytosis / membrane => GO:0016020 / endosome membrane / Golgi apparatus / magnesium ion binding / endoplasmic reticulum / ATP hydrolysis activity / mitochondrion / ATP binding / identical protein binding / plasma membrane
Similarity search - Function
CDC50/LEM3 family / LEM3 (ligand-effect modulator 3) family / CDC50 family / P-type ATPase, subfamily IV / P-type ATPase, C-terminal / P-type ATPase, N-terminal / Phospholipid-translocating ATPase N-terminal / Phospholipid-translocating P-type ATPase C-terminal / Cation transport ATPase (P-type) / P-type ATPase, haloacid dehalogenase domain / P-type ATPase, phosphorylation site ...CDC50/LEM3 family / LEM3 (ligand-effect modulator 3) family / CDC50 family / P-type ATPase, subfamily IV / P-type ATPase, C-terminal / P-type ATPase, N-terminal / Phospholipid-translocating ATPase N-terminal / Phospholipid-translocating P-type ATPase C-terminal / Cation transport ATPase (P-type) / P-type ATPase, haloacid dehalogenase domain / P-type ATPase, phosphorylation site / P-type ATPase, cytoplasmic domain N / E1-E2 ATPases phosphorylation site. / P-type ATPase, A domain superfamily / P-type ATPase / P-type ATPase, transmembrane domain superfamily / HAD superfamily / HAD-like superfamily
Similarity search - Domain/homology
LEM3 isoform 1 / Phospholipid-transporting ATPase DNF1
Similarity search - Component
Biological speciesSaccharomyces cerevisiae (brewer's yeast)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.1 Å
AuthorsBai, L. / You, Q. / Jain, B.K. / Duan, H.D. / Kovach, A. / Graham, T.R. / Li, H.
Funding support United States, 1items
OrganizationGrant numberCountry
National Institutes of Health/National Cancer Institute (NIH/NCI)CA231466 to H.L. and GM107978 to T.R.G. United States
CitationJournal: Elife / Year: 2020
Title: Transport mechanism of P4 ATPase phosphatidylcholine flippases.
Authors: Lin Bai / Qinglong You / Bhawik K Jain / H Diessel Duan / Amanda Kovach / Todd R Graham / Huilin Li /
Abstract: The P4 ATPases use ATP hydrolysis to transport large lipid substrates across lipid bilayers. The structures of the endosome- and Golgi-localized phosphatidylserine flippases-such as the yeast Drs2 ...The P4 ATPases use ATP hydrolysis to transport large lipid substrates across lipid bilayers. The structures of the endosome- and Golgi-localized phosphatidylserine flippases-such as the yeast Drs2 and human ATP8A1-have recently been reported. However, a substrate-binding site on the cytosolic side has not been found, and the transport mechanisms of P4 ATPases with other substrates are unknown. Here, we report structures of the Dnf1-Lem3 and Dnf2-Lem3 complexes. We captured substrate phosphatidylcholine molecules on both the exoplasmic and cytosolic sides and found that they have similar structures. Unexpectedly, Lem3 contributes to substrate binding. The conformational transitions of these phosphatidylcholine transporters match those of the phosphatidylserine transporters, suggesting a conserved mechanism among P4 ATPases. Dnf1/Dnf2 have a unique P domain helix-turn-helix insertion that is important for function. Therefore, P4 ATPases may have retained an overall transport mechanism while evolving distinct features for different lipid substrates.
History
DepositionDec 7, 2020Deposition site: RCSB / Processing site: RCSB
Revision 1.0Jan 6, 2021Provider: repository / Type: Initial release

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-23069
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Phospholipid-transporting ATPase DNF1
B: Alkylphosphocholine resistance protein LEM3
hetero molecules


Theoretical massNumber of molelcules
Total (without water)227,3938
Polymers225,4912
Non-polymers1,9026
Water0
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: gel filtration
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

-
Protein , 2 types, 2 molecules AB

#1: Protein Phospholipid-transporting ATPase DNF1 / Flippase DNF1


Mass: 178000.172 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (yeast)
Strain: ATCC 204508 / S288c / Gene: DNF1, YER166W, SYGP-ORF7 / Production host: Saccharomyces cerevisiae S288C (yeast) / Strain (production host): ATCC 204508 / S288c
References: UniProt: P32660, P-type phospholipid transporter
#2: Protein Alkylphosphocholine resistance protein LEM3 / BJ4_G0044140.mRNA.1.CDS.1 / HN1_G0043850.mRNA.1.CDS.1 / LEM3 isoform 1


Mass: 47490.395 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (yeast)
Strain: ATCC 204508 / S288c
Gene: LEM3, GI526_G0004759, PACBIOSEQ_LOCUS5272, PACBIOSEQ_LOCUS5307, SCNYR20_0008001200, SCP684_0008000800
Production host: Saccharomyces cerevisiae S288C (yeast) / Strain (production host): ATCC 204508 / S288c / References: UniProt: A0A6A5Q828

-
Sugars , 3 types, 5 molecules

#3: Polysaccharide alpha-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta- ...alpha-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 586.542 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DManpa1-4DGlcpNAcb1-4DGlcpNAcb1-ROHGlycam Condensed SequenceGMML 1.0
WURCS=2.0/2,3,2/[a2122h-1b_1-5_2*NCC/3=O][a1122h-1a_1-5]/1-1-2/a4-b1_b4-c1WURCSPDB2Glycan 1.1.0
[][D-1-deoxy-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{[(4+1)][a-D-Manp]{}}}LINUCSPDB-CARE
#4: Polysaccharide 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 424.401 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DGlcpNAcb1-4DGlcpNAcb1-ROHGlycam Condensed SequenceGMML 1.0
WURCS=2.0/1,2,1/[a2122h-1b_1-5_2*NCC/3=O]/1-1/a4-b1WURCSPDB2Glycan 1.1.0
[][D-1-deoxy-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{}}LINUCSPDB-CARE
#6: Sugar ChemComp-NAG / 2-acetamido-2-deoxy-beta-D-glucopyranose / N-acetyl-beta-D-glucosamine / 2-acetamido-2-deoxy-beta-D-glucose / 2-acetamido-2-deoxy-D-glucose / 2-acetamido-2-deoxy-glucose / N-ACETYL-D-GLUCOSAMINE / N-Acetylglucosamine


Type: D-saccharide, beta linking / Mass: 221.208 Da / Num. of mol.: 2 / Source method: obtained synthetically / Formula: C8H15NO6
IdentifierTypeProgram
DGlcpNAcbCONDENSED IUPAC CARBOHYDRATE SYMBOLGMML 1.0
N-acetyl-b-D-glucopyranosamineCOMMON NAMEGMML 1.0
b-D-GlcpNAcIUPAC CARBOHYDRATE SYMBOLPDB-CARE 1.0
GlcNAcSNFG CARBOHYDRATE SYMBOLGMML 1.0

-
Non-polymers , 1 types, 1 molecules

#5: Chemical ChemComp-MG / MAGNESIUM ION


Mass: 24.305 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: Mg

-
Details

Has ligand of interestN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: S. cerevisiae phosphatidylcholine flippase Dnf1-Lem3 complex in the apo E1 state
Type: COMPLEX / Entity ID: #1-#2 / Source: RECOMBINANT
Source (natural)Organism: Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (yeast)
Strain: ATCC 204508 / S288c
Source (recombinant)Organism: Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (yeast)
Strain: ATCC 204508 / S288c
Buffer solutionpH: 7.4
SpecimenConc.: 1.5 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportGrid material: GOLD / Grid type: Quantifoil R2/2
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: OTHER
Electron lensMode: BRIGHT FIELDBright-field microscopy
Image recordingElectron dose: 64 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

SoftwareName: PHENIX / Version: 1.17.1_3660: / Classification: refinement
CTF correctionType: NONE
3D reconstructionResolution: 3.1 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 473761 / Symmetry type: POINT
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00611442
ELECTRON MICROSCOPYf_angle_d0.73115581
ELECTRON MICROSCOPYf_dihedral_angle_d24.1411732
ELECTRON MICROSCOPYf_chiral_restr0.0451763
ELECTRON MICROSCOPYf_plane_restr0.0051903

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more