ribonucleoside-diphosphate reductase activity / pyrimidine nucleobase metabolic process / cell proliferation in forebrain / ribonucleoside diphosphate metabolic process / 2'-deoxyribonucleotide biosynthetic process / positive regulation of G0 to G1 transition / mitochondrial DNA replication / Interconversion of nucleotide di- and triphosphates / ribonucleoside-diphosphate reductase complex / ribonucleoside-diphosphate reductase ...ribonucleoside-diphosphate reductase activity / pyrimidine nucleobase metabolic process / cell proliferation in forebrain / ribonucleoside diphosphate metabolic process / 2'-deoxyribonucleotide biosynthetic process / positive regulation of G0 to G1 transition / mitochondrial DNA replication / Interconversion of nucleotide di- and triphosphates / ribonucleoside-diphosphate reductase complex / ribonucleoside-diphosphate reductase / ribonucleoside-diphosphate reductase activity, thioredoxin disulfide as acceptor / deoxyribonucleotide biosynthetic process / protein heterotetramerization / response to ionizing radiation / DNA synthesis involved in DNA repair / positive regulation of G1/S transition of mitotic cell cycle / positive regulation of G2/M transition of mitotic cell cycle / centriolar satellite / male gonad development / disordered domain specific binding / nuclear envelope / retina development in camera-type eye / ciliary basal body / DNA repair / neuronal cell body / mitochondrion / ATP binding / identical protein binding / cytosol Similarity search - Function
ATP-cone domain / ATP cone domain / ATP-cone domain profile. / Anaerobic Ribonucleotide-triphosphate Reductase Large Chain / Anaerobic Ribonucleotide-triphosphate Reductase Large Chain - #20 / Ribonucleotide reductase, class I , alpha subunit / Ribonucleotide reductase large subunit signature. / Ribonucleoside-diphosphate reductase large subunit / Ribonucleotide reductase R1 subunit, N-terminal / Ribonucleotide reductase large subunit, N-terminal ...ATP-cone domain / ATP cone domain / ATP-cone domain profile. / Anaerobic Ribonucleotide-triphosphate Reductase Large Chain / Anaerobic Ribonucleotide-triphosphate Reductase Large Chain - #20 / Ribonucleotide reductase, class I , alpha subunit / Ribonucleotide reductase large subunit signature. / Ribonucleoside-diphosphate reductase large subunit / Ribonucleotide reductase R1 subunit, N-terminal / Ribonucleotide reductase large subunit, N-terminal / Ribonucleotide reductase, all-alpha domain / Ribonucleotide reductase large subunit, C-terminal / Ribonucleotide reductase, barrel domain / Alpha-Beta Barrel / Alpha Beta Similarity search - Domain/homology
Journal: Nat Struct Mol Biol / Year: 2011 Title: Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization. Authors: James Wesley Fairman / Sanath Ranjan Wijerathna / Md Faiz Ahmad / Hai Xu / Ryo Nakano / Shalini Jha / Jay Prendergast / R Martin Welin / Susanne Flodin / Annette Roos / Pär Nordlund / ...Authors: James Wesley Fairman / Sanath Ranjan Wijerathna / Md Faiz Ahmad / Hai Xu / Ryo Nakano / Shalini Jha / Jay Prendergast / R Martin Welin / Susanne Flodin / Annette Roos / Pär Nordlund / Zongli Li / Thomas Walz / Chris Godfrey Dealwis / Abstract: Ribonucleotide reductase (RR) is an α(n)β(n) (RR1-RR2) complex that maintains balanced dNTP pools by reducing NDPs to dNDPs. RR1 is the catalytic subunit, and RR2 houses the free radical required ...Ribonucleotide reductase (RR) is an α(n)β(n) (RR1-RR2) complex that maintains balanced dNTP pools by reducing NDPs to dNDPs. RR1 is the catalytic subunit, and RR2 houses the free radical required for catalysis. RR is allosterically regulated by its activator ATP and its inhibitor dATP, which regulate RR activity by inducing oligomerization of RR1. Here, we report the first X-ray structures of human RR1 bound to TTP alone, dATP alone, TTP-GDP, TTP-ATP, and TTP-dATP. These structures provide insights into regulation of RR by ATP or dATP. At physiological dATP concentrations, RR1 forms inactive hexamers. We determined the first X-ray structure of the RR1-dATP hexamer and used single-particle electron microscopy to visualize the α(6)-ββ'-dATP holocomplex. Site-directed mutagenesis and functional assays confirm that hexamerization is a prerequisite for inhibition by dATP. Our data indicate a mechanism for regulating RR activity by dATP-induced oligomerization.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi