+
Open data
-
Basic information
| Entry | ![]() | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Title | Cryo-EM structure of DAMGO-muOR-arrestin-1-Fab30 complex | |||||||||
Map data | ||||||||||
Sample |
| |||||||||
Keywords | G-protein-coupled receptors / mu-opioid receptor / single particle / Cryo-EM / MEMBRANE PROTEIN | |||||||||
| Function / homology | Function and homology informationTGFBR3 regulates TGF-beta signaling / Opioid Signalling / MAP2K and MAPK activation / Activation of SMO / Golgi Associated Vesicle Biogenesis / renal water retention / Defective AVP does not bind AVPR2 and causes neurohypophyseal diabetes insipidus (NDI) / Vasopressin-like receptors / Lysosome Vesicle Biogenesis / regulation of systemic arterial blood pressure by vasopressin ...TGFBR3 regulates TGF-beta signaling / Opioid Signalling / MAP2K and MAPK activation / Activation of SMO / Golgi Associated Vesicle Biogenesis / renal water retention / Defective AVP does not bind AVPR2 and causes neurohypophyseal diabetes insipidus (NDI) / Vasopressin-like receptors / Lysosome Vesicle Biogenesis / regulation of systemic arterial blood pressure by vasopressin / vasopressin receptor activity / G-protein activation / beta-endorphin receptor activity / morphine receptor activity / negative regulation of Wnt protein secretion / Peptide ligand-binding receptors / G protein-coupled opioid receptor activity / AP-2 adaptor complex binding / Ub-specific processing proteases / clathrin coat of coated pit / clathrin heavy chain binding / Cargo recognition for clathrin-mediated endocytosis / G protein-coupled opioid receptor signaling pathway / hemostasis / desensitization of G protein-coupled receptor signaling pathway / telencephalon development / G alpha (i) signalling events / Clathrin-mediated endocytosis / negative regulation of nitric oxide biosynthetic process / clathrin-dependent endocytosis / adenylate cyclase-inhibiting G protein-coupled acetylcholine receptor signaling pathway / acetylcholine receptor binding / G protein-coupled receptor internalization / regulation of NMDA receptor activity / inositol hexakisphosphate binding / positive regulation of neurogenesis / Thrombin signalling through proteinase activated receptors (PARs) / G alpha (s) signalling events / clathrin binding / negative regulation of cytosolic calcium ion concentration / small molecule binding / positive regulation of vasoconstriction / pseudopodium / transmission of nerve impulse / positive regulation of systemic arterial blood pressure / phosphatidylinositol-3,4,5-trisphosphate binding / positive regulation of intracellular signal transduction / positive regulation of receptor internalization / negative regulation of Notch signaling pathway / endocytic vesicle / G-protein alpha-subunit binding / activation of adenylate cyclase activity / cellular response to hormone stimulus / response to cytokine / sensory perception of pain / presynaptic modulation of chemical synaptic transmission / locomotory behavior / clathrin-coated endocytic vesicle membrane / G protein-coupled receptor binding / adenylate cyclase-inhibiting G protein-coupled receptor signaling pathway / G protein-coupled receptor activity / GABA-ergic synapse / receptor internalization / adenylate cyclase-modulating G protein-coupled receptor signaling pathway / positive regulation of protein phosphorylation / Vasopressin regulates renal water homeostasis via Aquaporins / adenylate cyclase-activating dopamine receptor signaling pathway / Cargo recognition for clathrin-mediated endocytosis / presynapse / protein transport / Clathrin-mediated endocytosis / cytoplasmic vesicle / ubiquitin-dependent protein catabolic process / perikaryon / G alpha (s) signalling events / phospholipase C-activating G protein-coupled receptor signaling pathway / molecular adaptor activity / positive regulation of ERK1 and ERK2 cascade / endosome / G protein-coupled receptor signaling pathway / negative regulation of cell population proliferation / axon / positive regulation of cell population proliferation / dendrite / positive regulation of gene expression / perinuclear region of cytoplasm / endoplasmic reticulum / Golgi apparatus / signal transduction / nucleus / membrane / plasma membrane / cytosol / cytoplasm Similarity search - Function | |||||||||
| Biological species | ![]() Homo sapiens (human) / ![]() | |||||||||
| Method | single particle reconstruction / cryo EM / Resolution: 2.8 Å | |||||||||
Authors | Zhang H / Wang X / Xi K / Shen Q / Xue J / Zhu Y / Yang G / Zhang Y | |||||||||
| Funding support | 1 items
| |||||||||
Citation | Journal: Cell Res / Year: 2025Title: The molecular basis of μ-opioid receptor signaling plasticity. Authors: Huibing Zhang / Xueting Wang / Kun Xi / Qingya Shen / Jianheng Xue / Yanqing Zhu / Shao-Kun Zang / Tianqiang Yu / Dan-Dan Shen / Jia Guo / Li-Nan Chen / Su-Yu Ji / Jiao Qin / Yingjun Dong / ...Authors: Huibing Zhang / Xueting Wang / Kun Xi / Qingya Shen / Jianheng Xue / Yanqing Zhu / Shao-Kun Zang / Tianqiang Yu / Dan-Dan Shen / Jia Guo / Li-Nan Chen / Su-Yu Ji / Jiao Qin / Yingjun Dong / Mingming Zhao / Ming Yang / Haijing Wu / Guoli Yang / Yan Zhang / ![]() Abstract: Activation of the μ-opioid receptor (μOR) alleviates pain but also elicits adverse effects through diverse G proteins and β-arrestins. The structural details of μOR complexes with G and β- ...Activation of the μ-opioid receptor (μOR) alleviates pain but also elicits adverse effects through diverse G proteins and β-arrestins. The structural details of μOR complexes with G and β-arrestins have not been determined, impeding a comprehensive understanding of μOR signaling plasticity. Here, we present the cryo-EM structures of the μOR-G and μOR-βarr1 complexes, revealing selective conformational preferences of μOR when engaged with specific downstream signaling transducers. Integrated receptor pharmacology, including high-resolution structural analysis, cell signaling assays, and molecular dynamics simulations, demonstrated that transmembrane helix 1 (TM1) acts as an allosteric regulator of μOR signaling bias through differential stabilization of the G-, G-, and βarr1-bound states. Mechanistically, outward TM1 displacement confers structural flexibility that promotes G protein recruitment, whereas inward TM1 retraction facilitates βarr1 recruitment by stabilizing the intracellular binding pocket through coordinated interactions with TM2, TM7, and helix8. Structural comparisons between the G-, G-, and βarr1-bound complexes identified a TM1-fusion pocket with significant implications for downstream signaling regulation. Overall, we demonstrate that the conformational and thermodynamic heterogeneity of TM1 allosterically drives the downstream signaling specificity and plasticity of μOR, thereby expanding the understanding of μOR signal transduction mechanisms and providing new avenues for the rational design of analgesics. | |||||||||
| History |
|
-
Structure visualization
| Supplemental images |
|---|
-
Downloads & links
-EMDB archive
| Map data | emd_66207.map.gz | 85.2 MB | EMDB map data format | |
|---|---|---|---|---|
| Header (meta data) | emd-66207-v30.xml emd-66207.xml | 19.6 KB 19.6 KB | Display Display | EMDB header |
| Images | emd_66207.png | 70.4 KB | ||
| Filedesc metadata | emd-66207.cif.gz | 6.9 KB | ||
| Others | emd_66207_half_map_1.map.gz emd_66207_half_map_2.map.gz | 71.4 MB 71.4 MB | ||
| Archive directory | http://ftp.pdbj.org/pub/emdb/structures/EMD-66207 ftp://ftp.pdbj.org/pub/emdb/structures/EMD-66207 | HTTPS FTP |
-Validation report
| Summary document | emd_66207_validation.pdf.gz | 935.2 KB | Display | EMDB validaton report |
|---|---|---|---|---|
| Full document | emd_66207_full_validation.pdf.gz | 934.8 KB | Display | |
| Data in XML | emd_66207_validation.xml.gz | 12.9 KB | Display | |
| Data in CIF | emd_66207_validation.cif.gz | 15.4 KB | Display | |
| Arichive directory | https://ftp.pdbj.org/pub/emdb/validation_reports/EMD-66207 ftp://ftp.pdbj.org/pub/emdb/validation_reports/EMD-66207 | HTTPS FTP |
-Related structure data
| Related structure data | ![]() 9wsvMC ![]() 9wstC ![]() 9wswC ![]() 9wsxC M: atomic model generated by this map C: citing same article ( |
|---|---|
| Similar structure data | Similarity search - Function & homology F&H Search |
-
Links
| EMDB pages | EMDB (EBI/PDBe) / EMDataResource |
|---|---|
| Related items in Molecule of the Month |
-
Map
| File | Download / File: emd_66207.map.gz / Format: CCP4 / Size: 91.1 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES) | ||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
| Voxel size | X=Y=Z: 0.93 Å | ||||||||||||||||||||||||||||||||||||
| Density |
| ||||||||||||||||||||||||||||||||||||
| Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
| Details | EMDB XML:
|
-Supplemental data
-Half map: #2
| File | emd_66207_half_map_1.map | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Projections & Slices |
| ||||||||||||
| Density Histograms |
-Half map: #1
| File | emd_66207_half_map_2.map | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Projections & Slices |
| ||||||||||||
| Density Histograms |
-
Sample components
-Entire : Complex of DAMGO bound MOR-arrestin2 protein
| Entire | Name: Complex of DAMGO bound MOR-arrestin2 protein |
|---|---|
| Components |
|
-Supramolecule #1: Complex of DAMGO bound MOR-arrestin2 protein
| Supramolecule | Name: Complex of DAMGO bound MOR-arrestin2 protein / type: complex / ID: 1 / Parent: 0 / Macromolecule list: #1-#5 |
|---|---|
| Source (natural) | Organism: ![]() |
-Macromolecule #1: Mu-type opioid receptor,Vasopressin V2 receptor
| Macromolecule | Name: Mu-type opioid receptor,Vasopressin V2 receptor / type: protein_or_peptide / ID: 1 / Number of copies: 1 / Enantiomer: LEVO |
|---|---|
| Source (natural) | Organism: Homo sapiens (human) |
| Molecular weight | Theoretical: 43.316148 KDa |
| Recombinant expression | Organism: ![]() |
| Sequence | String: GPMGPGNISD CSDPLAPASC SPAPGSWLNL SHVDGNQSDP CGPNRTGLGG SHSLCPQTGS PSMVTAITIM ALYSIVCVVG LFGNFLVMY VIVRYTKMKT ATNIYIFNLA LADALATSTL PFQSVNYLMG TWPFGNILCK IVISIDYYNM FTSIFTLCTM S VDRYIAVC ...String: GPMGPGNISD CSDPLAPASC SPAPGSWLNL SHVDGNQSDP CGPNRTGLGG SHSLCPQTGS PSMVTAITIM ALYSIVCVVG LFGNFLVMY VIVRYTKMKT ATNIYIFNLA LADALATSTL PFQSVNYLMG TWPFGNILCK IVISIDYYNM FTSIFTLCTM S VDRYIAVC HPVKALDFRT PRNAKIVNVC NWILSSAIGL PVMFMATTKY RQGSIDCTLT FSHPTWYWEN LLKICVFIFA FI MPVLIIT VCYGLMILRL KSVRMLSGSK EKDRNLRRIT RMVLVVVAVF IVCWTPIHIY VIIKALITIP ETTFQTVSWH FCI ALGYTN SCLNPVLYAF LDENFKRCFR EFCICARGRT PPSLGPQDE(SEP) C(TPO)(TPO)A(SEP)(SEP)(SEP)LAK DTSSLEVLF Q UniProtKB: Mu-type opioid receptor, Vasopressin V2 receptor |
-Macromolecule #2: Beta-arrestin-1
| Macromolecule | Name: Beta-arrestin-1 / type: protein_or_peptide / ID: 2 / Number of copies: 1 / Enantiomer: LEVO |
|---|---|
| Source (natural) | Organism: ![]() |
| Molecular weight | Theoretical: 44.135273 KDa |
| Recombinant expression | Organism: ![]() |
| Sequence | String: MGDKGTRVFK KASPNGKLTV YLGKRDFVDH IDLVEPVDGV VLVDPEYLKE RRVYVTLTCA FRYGREDLDV LGLTFRKDLF VANVQSFPP APEDKKPLTR LQERLIKKLG EHAYPFTFEI PPNLPCSVTL QPGPEDTGKA CGVDYEVKAF CAENLEEKIH K RNSVRLVI ...String: MGDKGTRVFK KASPNGKLTV YLGKRDFVDH IDLVEPVDGV VLVDPEYLKE RRVYVTLTCA FRYGREDLDV LGLTFRKDLF VANVQSFPP APEDKKPLTR LQERLIKKLG EHAYPFTFEI PPNLPCSVTL QPGPEDTGKA CGVDYEVKAF CAENLEEKIH K RNSVRLVI EKVQYAPERP GPQPTAETTR QFLMSDKPLH LEASLDKEIY YHGEPISVNV HVTNNTNKTV KKIKISVRQY AD ICLFNTA QYKCPVAMEE ADDTVAPSST FCKVYTLTPF LANNREKRGL ALDGKLKHED TNLASSTLLR EGANREILGI IVS YKVKVK LVVSRGGLLG DLASSDVAVE LPFTLMHPKP KEEPPHREVP EHETPVDTNL IELDTNDDDA AAEDFAR UniProtKB: Beta-arrestin-1 |
-Macromolecule #3: Fab30 heavy chain
| Macromolecule | Name: Fab30 heavy chain / type: protein_or_peptide / ID: 3 / Number of copies: 1 / Enantiomer: LEVO |
|---|---|
| Source (natural) | Organism: synthetic construct (others) |
| Molecular weight | Theoretical: 25.333227 KDa |
| Recombinant expression | Organism: ![]() |
| Sequence | String: MEISEVQLVE SGGGLVQPGG SLRLSCAASG FNVYSSSIHW VRQAPGKGLE WVASISSYYG YTYYADSVKG RFTISADTSK NTAYLQMNS LRAEDTAVYY CARSRQFWYS GLDYWGQGTL VTVSSASTKG PSVFPLAPSS KSTSGGTAAL GCLVKDYFPE P VTVSWNSG ...String: MEISEVQLVE SGGGLVQPGG SLRLSCAASG FNVYSSSIHW VRQAPGKGLE WVASISSYYG YTYYADSVKG RFTISADTSK NTAYLQMNS LRAEDTAVYY CARSRQFWYS GLDYWGQGTL VTVSSASTKG PSVFPLAPSS KSTSGGTAAL GCLVKDYFPE P VTVSWNSG ALTSGVHTFP AVLQSSGLYS LSSVVTVPSS SLGTQTYICN VNHKPSNTKV DKKVEPKSCD KTENLYFQ |
-Macromolecule #4: Fab30 light chain
| Macromolecule | Name: Fab30 light chain / type: protein_or_peptide / ID: 4 / Number of copies: 1 / Enantiomer: LEVO |
|---|---|
| Source (natural) | Organism: synthetic construct (others) |
| Molecular weight | Theoretical: 23.56626 KDa |
| Recombinant expression | Organism: ![]() |
| Sequence | String: MSDIQMTQSP SSLSASVGDR VTITCRASQS VSSAVAWYQQ KPGKAPKLLI YSASSLYSGV PSRFSGSRSG TDFTLTISSL QPEDFATYY CQQYKYVPVT FGQGTKVEIK RTVAAPSVFI FPPSDSQLKS GTASVVCLLN NFYPREAKVQ WKVDNALQSG N SQESVTEQ ...String: MSDIQMTQSP SSLSASVGDR VTITCRASQS VSSAVAWYQQ KPGKAPKLLI YSASSLYSGV PSRFSGSRSG TDFTLTISSL QPEDFATYY CQQYKYVPVT FGQGTKVEIK RTVAAPSVFI FPPSDSQLKS GTASVVCLLN NFYPREAKVQ WKVDNALQSG N SQESVTEQ DSKDSTYSLS STLTLSKADY EKHKVYACEV THQGLSSPVT KSFNRGEC |
-Macromolecule #5: DAMGO
| Macromolecule | Name: DAMGO / type: protein_or_peptide / ID: 5 / Number of copies: 1 / Enantiomer: LEVO |
|---|---|
| Source (natural) | Organism: synthetic construct (others) |
| Molecular weight | Theoretical: 513.587 Da |
| Sequence | String: Y(DAL)G(MEA)(ETA) |
-Macromolecule #6: water
| Macromolecule | Name: water / type: ligand / ID: 6 / Number of copies: 4 / Formula: HOH |
|---|---|
| Molecular weight | Theoretical: 18.015 Da |
| Chemical component information | ![]() ChemComp-HOH: |
-Experimental details
-Structure determination
| Method | cryo EM |
|---|---|
Processing | single particle reconstruction |
| Aggregation state | particle |
-
Sample preparation
| Buffer | pH: 7.4 |
|---|---|
| Vitrification | Cryogen name: ETHANE |
-
Electron microscopy
| Microscope | TFS KRIOS |
|---|---|
| Image recording | Film or detector model: FEI FALCON IV (4k x 4k) / Average electron dose: 52.0 e/Å2 |
| Electron beam | Acceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN |
| Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Nominal defocus max: 2.0 µm / Nominal defocus min: 0.6 µm |
| Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
Movie
Controller
About Yorodumi




Keywords
Homo sapiens (human)
Authors
Citation

















Z (Sec.)
Y (Row.)
X (Col.)







































Processing
FIELD EMISSION GUN
