Journal: J Biol Chem / Year: 2025 Title: A unique gating mechanism revealed by the cryo-EM structure of monomeric ATP9A flippase. Authors: Kazuhiro Abe / Parthiban Marimuthu / Yuheng Qian / Chai C Gopalasingam / Christoph Gerle / Hideki Shigematsu / Kotaro Tanaka / Himanshu Khandelia / Abstract: Among mammalian P4-ATPase flippases, only ATP9A and ATP9B do not require the auxiliary subunit CDC50 protein. Whilst its yeast homologue, Neo1, is essential for cell survival, little is known about ...Among mammalian P4-ATPase flippases, only ATP9A and ATP9B do not require the auxiliary subunit CDC50 protein. Whilst its yeast homologue, Neo1, is essential for cell survival, little is known about mammalian ATP9A. We present cryo-EM structures of human monomeric ATP9A at a resolution reaching to 2.2Å, in the outward-facing E2P state. Two distinguishable conformations were obtained from a single sample, one with its outward gate open, and the other in its closed form. Unlike canonical gating observed for most P-type ATPases, which is driven by the movement of transmembrane (TM) helices 1 and 2 linked to the A domain, outward gating in ATP9A is achieved by the movement of TM6-10 helices, likely initiated by the unwinding of TM6. As a result, the volume of the phospholipid binding cavity in the open state surpasses that of other flippases, which could allow binding of phospholipids with larger hydrophilic head groups than that of phosphatidylserine. ATP9A shows an ATPase activity that is significantly increased by the addition of phospholipids that retain the overall negative charge, including phosphatidylserine, phosphatidylinositol and its phosphorylated species, compared to other electroneutral phospholipids. The observation of spontaneous binding of phosphorylated species of phosphatidylinositol in molecular simulation reinforces this fact. Our data provide mechanistic rationales for ATP9A gating, achieved by the rearrangement of the second half of the TM helices. Since TM4 - TM10 is anchored by the CDC50 protein subunit in other flippases, the here observed outward gating mechanism is unique to P4B-type flippases which function as a monomer.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi