positive regulation of rRNA processing / nucleoid / rRNA processing / regulation of translation / large ribosomal subunit / transferase activity / 5S rRNA binding / ribosomal large subunit assembly / large ribosomal subunit rRNA binding / cytosolic large ribosomal subunit ...positive regulation of rRNA processing / nucleoid / rRNA processing / regulation of translation / large ribosomal subunit / transferase activity / 5S rRNA binding / ribosomal large subunit assembly / large ribosomal subunit rRNA binding / cytosolic large ribosomal subunit / cytoplasmic translation / tRNA binding / negative regulation of translation / rRNA binding / ribosome / structural constituent of ribosome / translation / ribonucleoprotein complex / response to antibiotic / mRNA binding / DNA binding / RNA binding / cytoplasm 類似検索 - 分子機能
Ribosomal protein L1, bacterial-type / Ribosomal protein L1, conserved site / Ribosomal protein L1 signature. / Ribosomal protein L1 / Ribosomal protein L1, 3-layer alpha/beta-sandwich / Ribosomal protein L11, bacterial-type / Ribosomal protein L1-like / Ribosomal protein L1/ribosomal biogenesis protein / Ribosomal protein L1p/L10e family / Ribosomal protein L11, conserved site ...Ribosomal protein L1, bacterial-type / Ribosomal protein L1, conserved site / Ribosomal protein L1 signature. / Ribosomal protein L1 / Ribosomal protein L1, 3-layer alpha/beta-sandwich / Ribosomal protein L11, bacterial-type / Ribosomal protein L1-like / Ribosomal protein L1/ribosomal biogenesis protein / Ribosomal protein L1p/L10e family / Ribosomal protein L11, conserved site / Ribosomal protein L11 signature. / Ribosomal protein L21, conserved site / Ribosomal protein L21 signature. / Ribosomal protein L6, conserved site / Ribosomal protein L6 signature 1. / : / Ribosomal protein L11, N-terminal / Ribosomal protein L11, N-terminal domain / Ribosomal protein L17 signature. / Ribosomal protein L11/L12 / Ribosomal protein L11, C-terminal / Ribosomal protein L11, C-terminal domain superfamily / Ribosomal protein L11/L12, N-terminal domain superfamily / Ribosomal protein L11/L12 / Ribosomal protein L11, RNA binding domain / Ribosomal protein L32p, bacterial type / : / Ribosomal protein L18, bacterial-type / Ribosomal protein L5, bacterial-type / : / Ribosomal protein L6, bacterial-type / Ribosomal protein L19, conserved site / Ribosomal protein L19 signature. / Ribosomal protein L20 signature. / Ribosomal protein L22, bacterial/chloroplast-type / Ribosomal protein L14P, bacterial-type / Ribosomal protein L34, conserved site / Ribosomal protein L34 signature. / Ribosomal protein L2, bacterial/organellar-type / Ribosomal protein L18 / Ribosomal L18 of archaea, bacteria, mitoch. and chloroplast / Ribosomal protein L30, bacterial-type / : / Ribosomal protein L20 / Ribosomal L32p protein family / Ribosomal protein L19 / Ribosomal protein L19 / Ribosomal protein L20 / Ribosomal protein L20, C-terminal / Ribosomal protein L19 superfamily / Ribosomal protein L21 / Ribosomal protein L32p / Ribosomal protein L17 / Ribosomal protein L17 superfamily / Ribosomal protein L17 / Ribosomal proteins 50S L24/mitochondrial 39S L24 / Ribosomal protein L21-like / L21-like superfamily / Ribosomal prokaryotic L21 protein / Ribosomal protein L34 / Ribosomal protein L34 / Ribosomal protein L24 / Ribosomal protein L13, bacterial-type / Ribosomal protein L3, bacterial/organelle-type / Ribosomal protein L15, bacterial-type / 50S ribosomal protein uL4 / Ribosomal protein L23/L25, conserved site / Ribosomal protein L23 signature. / Ribosomal protein L30, conserved site / Ribosomal protein L30 signature. / Ribosomal protein L5, conserved site / Ribosomal protein L5 signature. / Ribosomal protein L2 signature. / Ribosomal protein L29, conserved site / Ribosomal protein L29 signature. / Ribosomal protein L2, conserved site / Ribosomal protein L5, N-terminal / Ribosomal protein L5 / Ribosomal protein L15, conserved site / Ribosomal protein L15 signature. / Ribosomal protein L5, C-terminal / ribosomal L5P family C-terminus / Ribosomal protein L5 / Ribosomal protein L5 domain superfamily / Ribosomal protein L6, alpha-beta domain / Ribosomal protein L6 / Ribosomal protein L6 / Ribosomal protein L6, alpha-beta domain superfamily / Ribosomal protein L13 signature. / Ribosomal protein L2, domain 3 / Ribosomal protein L13, conserved site / Ribosomal protein L22/L17, conserved site / Ribosomal protein L22 signature. / Ribosomal protein L14P, conserved site / Ribosomal protein L14 signature. / Ribosomal L29 protein / Ribosomal protein L29/L35 / Ribosomal protein L29/L35 superfamily / Ribosomal Proteins L2, C-terminal domain / Ribosomal protein L2, C-terminal 類似検索 - ドメイン・相同性
Large ribosomal subunit protein bL19 / Large ribosomal subunit protein bL32 / Large ribosomal subunit protein bL34 / Large ribosomal subunit protein uL24 / Large ribosomal subunit protein uL29 / Large ribosomal subunit protein uL14 / Large ribosomal subunit protein uL5 / Large ribosomal subunit protein uL15 / Large ribosomal subunit protein uL30 / Large ribosomal subunit protein bL17 ...Large ribosomal subunit protein bL19 / Large ribosomal subunit protein bL32 / Large ribosomal subunit protein bL34 / Large ribosomal subunit protein uL24 / Large ribosomal subunit protein uL29 / Large ribosomal subunit protein uL14 / Large ribosomal subunit protein uL5 / Large ribosomal subunit protein uL15 / Large ribosomal subunit protein uL30 / Large ribosomal subunit protein bL17 / Large ribosomal subunit protein bL21 / Large ribosomal subunit protein uL22 / Large ribosomal subunit protein uL2 / Large ribosomal subunit protein uL3 / Large ribosomal subunit protein uL4 / Large ribosomal subunit protein uL23 / Large ribosomal subunit protein uL6 / Large ribosomal subunit protein uL18 / Large ribosomal subunit protein bL20 / Large ribosomal subunit protein uL13 / Large ribosomal subunit protein uL11 / Large ribosomal subunit protein uL1 類似検索 - 構成要素
ジャーナル: Nucleic Acids Res / 年: 2013 タイトル: Cryo-EM structures of the late-stage assembly intermediates of the bacterial 50S ribosomal subunit. 著者: Ningning Li / Yuling Chen / Qiang Guo / Yixiao Zhang / Yi Yuan / Chengying Ma / Haiteng Deng / Jianlin Lei / Ning Gao / 要旨: Ribosome assembly is a process fundamental for all cellular activities. The efficiency and accuracy of the subunit assembly are tightly regulated and closely monitored. In the present work, we ...Ribosome assembly is a process fundamental for all cellular activities. The efficiency and accuracy of the subunit assembly are tightly regulated and closely monitored. In the present work, we characterized, both compositionally and structurally, a set of in vivo 50S subunit precursors (45S), isolated from a mutant bacterial strain. Our qualitative mass spectrometry data indicate that L28, L16, L33, L36 and L35 are dramatically underrepresented in the 45S particles. This protein spectrum shows interesting similarity to many qualitatively analyzed 50S precursors from different genetic background, indicating the presence of global rate-limiting steps in the late-stage assembly of 50S subunit. Our structural data reveal two major intermediate states for the 45S particles. Consistently, both states severally lack those proteins, but they also differ in the stability of the functional centers of the 50S subunit, demonstrating that they are translationally inactive. Detailed analysis indicates that the orientation of H38 accounts for the global conformational differences in these intermediate structures, and suggests that the reorientation of H38 to its native position is rate-limiting during the late-stage assembly. Especially, H38 plays an essential role in stabilizing the central protuberance, through the interaction with the 5S rRNA, and the correctly orientated H38 is likely a prerequisite for further maturation of the 50S subunit.
Atom models of the 23S and 5S rRNAs were built using the software S2S and modeRNA, with the crystal structures of the 50S subunits from E. coli (PDB ID: 2AW4) and Thermus thermophilus (PDB ID: 2J01) as template. Models of ribosomal proteins, L1, L3, L4, L6, L10, L13, L14, L15, L17, L19, L20, L21, L22, L23, L24, L27, L29, L30, L31, L32, L33, L34, L35 and L36 were downloaded from the SWISS-MODEL Repository. The others, including L2, L5, L11, L16, L18 and L28 were modeled using MODELLER with crystal structures of E. coli and T. thermophilus 50S subunits as templates.The combined atomic model of the B. subtilis 50S subunit was docked into a high resolution mature 50S density map and optimized using MDFF. This optimized model was docked into the EM density using Chimera and flexible fitted into the density using MDFF
精密化
空間: REAL / プロトコル: FLEXIBLE FIT
得られたモデル
PDB-3j3v: Atomic model of the immature 50S subunit from Bacillus subtilis (state I-a)
Atom models of the 23S and 5S rRNAs were built using the software S2S and modeRNA, with the crystal structures of the 50S subunits from E. coli (PDB ID: 2AW4) and Thermus thermophilus (PDB ID: 2J01) as template. Models of ribosomal proteins, L1, L3, L4, L6, L10, L13, L14, L15, L17, L19, L20, L21, L22, L23, L24, L27, L29, L30, L31, L32, L33, L34, L35 and L36 were downloaded from the SWISS-MODEL Repository. The others, including L2, L5, L11, L16, L18 and L28 were modeled using MODELLER with crystal structures of E. coli and T. thermophilus 50S subunits as templates.The combined atomic model of the B. subtilis 50S subunit was docked into a high resolution mature 50S density map and optimized using MDFF. This optimized model was docked into the EM density using Chimera and flexible fitted into the density using MDFF
精密化
空間: REAL / プロトコル: FLEXIBLE FIT
得られたモデル
PDB-3j3v: Atomic model of the immature 50S subunit from Bacillus subtilis (state I-a)