[English] 日本語
Yorodumi
- PDB-3j3v: Atomic model of the immature 50S subunit from Bacillus subtilis (... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 3j3v
TitleAtomic model of the immature 50S subunit from Bacillus subtilis (state I-a)
Components
  • (50S ribosomal protein ...) x 22
  • (ribosome RNA ...) x 2
KeywordsRIBOSOME / Ribosome biogenesis / ribosome assembly / RNA folding / YlqF
Function / homology
Function and homology information


positive regulation of rRNA processing / nucleoid / rRNA processing / large ribosomal subunit / regulation of translation / 5S rRNA binding / large ribosomal subunit rRNA binding / transferase activity / ribosomal large subunit assembly / cytoplasmic translation ...positive regulation of rRNA processing / nucleoid / rRNA processing / large ribosomal subunit / regulation of translation / 5S rRNA binding / large ribosomal subunit rRNA binding / transferase activity / ribosomal large subunit assembly / cytoplasmic translation / cytosolic large ribosomal subunit / tRNA binding / negative regulation of translation / rRNA binding / ribosome / structural constituent of ribosome / ribonucleoprotein complex / translation / response to antibiotic / mRNA binding / DNA binding / RNA binding / cytoplasm
Similarity search - Function
Ribosomal protein L1, bacterial-type / Ribosomal protein L1, conserved site / Ribosomal protein L1 signature. / Ribosomal protein L1 / Ribosomal protein L1, 3-layer alpha/beta-sandwich / Ribosomal protein L1-like / Ribosomal protein L1/ribosomal biogenesis protein / Ribosomal protein L1p/L10e family / Ribosomal protein L11, bacterial-type / Ribosomal protein L21, conserved site ...Ribosomal protein L1, bacterial-type / Ribosomal protein L1, conserved site / Ribosomal protein L1 signature. / Ribosomal protein L1 / Ribosomal protein L1, 3-layer alpha/beta-sandwich / Ribosomal protein L1-like / Ribosomal protein L1/ribosomal biogenesis protein / Ribosomal protein L1p/L10e family / Ribosomal protein L11, bacterial-type / Ribosomal protein L21, conserved site / Ribosomal protein L21 signature. / Ribosomal protein L11, conserved site / Ribosomal protein L11 signature. / : / Ribosomal protein L6, conserved site / Ribosomal protein L6 signature 1. / Ribosomal protein L17 signature. / Ribosomal protein L11, N-terminal / Ribosomal protein L11, N-terminal domain / Ribosomal protein L11/L12 / Ribosomal protein L11, C-terminal / Ribosomal protein L11, C-terminal domain superfamily / Ribosomal protein L11/L12, N-terminal domain superfamily / Ribosomal protein L11, RNA binding domain / Ribosomal protein L11/L12 / Ribosomal protein L32p, bacterial type / : / : / Ribosomal protein L5, bacterial-type / Ribosomal protein L18, bacterial-type / Ribosomal protein L6, bacterial-type / Ribosomal protein L19, conserved site / Ribosomal protein L19 signature. / Ribosomal protein L20 signature. / Ribosomal protein L14P, bacterial-type / Ribosomal protein L22, bacterial/chloroplast-type / Ribosomal protein L2, bacterial/organellar-type / Ribosomal protein L34, conserved site / Ribosomal protein L34 signature. / Ribosomal protein L18 / Ribosomal L18 of archaea, bacteria, mitoch. and chloroplast / Ribosomal protein L30, bacterial-type / : / Ribosomal protein L20 / Ribosomal protein L20 / Ribosomal protein L20, C-terminal / Ribosomal protein L21 / Ribosomal protein L19 / Ribosomal protein L19 / Ribosomal protein L19 superfamily / Ribosomal proteins 50S L24/mitochondrial 39S L24 / Ribosomal protein L17 / Ribosomal protein L17 superfamily / Ribosomal protein L17 / Ribosomal protein L21-like / L21-like superfamily / Ribosomal prokaryotic L21 protein / Ribosomal L32p protein family / Ribosomal protein L32p / Ribosomal protein L24 / Ribosomal protein L13, bacterial-type / Ribosomal protein L3, bacterial/organelle-type / Ribosomal protein L15, bacterial-type / 50S ribosomal protein uL4 / Ribosomal protein L34 / Ribosomal protein L34 / Ribosomal protein L23/L25, conserved site / Ribosomal protein L23 signature. / Ribosomal protein L30, conserved site / Ribosomal protein L30 signature. / Ribosomal protein L5, conserved site / Ribosomal protein L5 signature. / Ribosomal protein L2 signature. / Ribosomal protein L29, conserved site / Ribosomal protein L29 signature. / Ribosomal protein L15, conserved site / Ribosomal protein L15 signature. / Ribosomal protein L2, conserved site / Ribosomal protein L5, N-terminal / Ribosomal protein L5 / Ribosomal protein L5, C-terminal / ribosomal L5P family C-terminus / Ribosomal protein L5 / Ribosomal protein L5 domain superfamily / Ribosomal protein L6, alpha-beta domain / Ribosomal protein L6 / Ribosomal protein L6 / Ribosomal protein L6, alpha-beta domain superfamily / Ribosomal protein L13 signature. / Ribosomal protein L2, domain 3 / Ribosomal protein L13, conserved site / Ribosomal protein L14P, conserved site / Ribosomal protein L14 signature. / Ribosomal protein L22/L17, conserved site / Ribosomal protein L22 signature. / Ribosomal L29 protein / Ribosomal protein L29/L35 / Ribosomal protein L29/L35 superfamily / Ribosomal Proteins L2, C-terminal domain / Ribosomal protein L2, C-terminal
Similarity search - Domain/homology
: / RNA / RNA (> 10) / RNA (> 100) / RNA (> 1000) / Large ribosomal subunit protein bL19 / Large ribosomal subunit protein bL32 / Large ribosomal subunit protein bL34 / Large ribosomal subunit protein uL24 / Large ribosomal subunit protein uL29 ...: / RNA / RNA (> 10) / RNA (> 100) / RNA (> 1000) / Large ribosomal subunit protein bL19 / Large ribosomal subunit protein bL32 / Large ribosomal subunit protein bL34 / Large ribosomal subunit protein uL24 / Large ribosomal subunit protein uL29 / Large ribosomal subunit protein uL14 / Large ribosomal subunit protein uL5 / Large ribosomal subunit protein uL15 / Large ribosomal subunit protein uL30 / Large ribosomal subunit protein bL17 / Large ribosomal subunit protein bL21 / Large ribosomal subunit protein uL22 / Large ribosomal subunit protein uL2 / Large ribosomal subunit protein uL3 / Large ribosomal subunit protein uL4 / Large ribosomal subunit protein uL23 / Large ribosomal subunit protein uL6 / Large ribosomal subunit protein uL18 / Large ribosomal subunit protein bL20 / Large ribosomal subunit protein uL13 / Large ribosomal subunit protein uL11 / Large ribosomal subunit protein uL1
Similarity search - Component
Biological speciesBacillus subtilis (bacteria)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 13.3 Å
AuthorsLi, N. / Guo, Q. / Zhang, Y. / Yuan, Y. / Ma, C. / Lei, J. / Gao, N.
CitationJournal: Nucleic Acids Res / Year: 2013
Title: Cryo-EM structures of the late-stage assembly intermediates of the bacterial 50S ribosomal subunit.
Authors: Ningning Li / Yuling Chen / Qiang Guo / Yixiao Zhang / Yi Yuan / Chengying Ma / Haiteng Deng / Jianlin Lei / Ning Gao /
Abstract: Ribosome assembly is a process fundamental for all cellular activities. The efficiency and accuracy of the subunit assembly are tightly regulated and closely monitored. In the present work, we ...Ribosome assembly is a process fundamental for all cellular activities. The efficiency and accuracy of the subunit assembly are tightly regulated and closely monitored. In the present work, we characterized, both compositionally and structurally, a set of in vivo 50S subunit precursors (45S), isolated from a mutant bacterial strain. Our qualitative mass spectrometry data indicate that L28, L16, L33, L36 and L35 are dramatically underrepresented in the 45S particles. This protein spectrum shows interesting similarity to many qualitatively analyzed 50S precursors from different genetic background, indicating the presence of global rate-limiting steps in the late-stage assembly of 50S subunit. Our structural data reveal two major intermediate states for the 45S particles. Consistently, both states severally lack those proteins, but they also differ in the stability of the functional centers of the 50S subunit, demonstrating that they are translationally inactive. Detailed analysis indicates that the orientation of H38 accounts for the global conformational differences in these intermediate structures, and suggests that the reorientation of H38 to its native position is rate-limiting during the late-stage assembly. Especially, H38 plays an essential role in stabilizing the central protuberance, through the interaction with the 5S rRNA, and the correctly orientated H38 is likely a prerequisite for further maturation of the 50S subunit.
History
DepositionApr 28, 2013Deposition site: RCSB / Processing site: PDBJ
Revision 1.0Jun 12, 2013Provider: repository / Type: Initial release
Revision 1.1Aug 28, 2013Group: Database references
Revision 1.2Dec 18, 2019Group: Data collection / Database references / Category: database_2 / em_image_scans / em_software
Item: _em_software.fitting_id / _em_software.image_processing_id / _em_software.name
Revision 1.3Mar 20, 2024Group: Data collection / Database references / Refinement description
Category: chem_comp_atom / chem_comp_bond ...chem_comp_atom / chem_comp_bond / database_2 / em_3d_fitting_list / pdbx_initial_refinement_model
Item: _database_2.pdbx_DOI / _database_2.pdbx_database_accession ..._database_2.pdbx_DOI / _database_2.pdbx_database_accession / _em_3d_fitting_list.accession_code / _em_3d_fitting_list.initial_refinement_model_id / _em_3d_fitting_list.source_name / _em_3d_fitting_list.type

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-5642
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
0: 50S ribosomal protein L32
2: 50S ribosomal protein L34
5: 50S ribosomal protein L1
6: 50S ribosomal protein L11
A: ribosome RNA 23S
B: ribosome RNA 5S
C: 50S ribosomal protein L2
D: 50S ribosomal protein L3
E: 50S ribosomal protein L4
F: 50S ribosomal protein L5
G: 50S ribosomal protein L6
J: 50S ribosomal protein L13
K: 50S ribosomal protein L14
L: 50S ribosomal protein L15
N: 50S ribosomal protein L17
O: 50S ribosomal protein L18
P: 50S ribosomal protein L19
Q: 50S ribosomal protein L20
R: 50S ribosomal protein L21
S: 50S ribosomal protein L22
T: 50S ribosomal protein L23
U: 50S ribosomal protein L24
X: 50S ribosomal protein L29
Y: 50S ribosomal protein L30


Theoretical massNumber of molelcules
Total (without water)1,314,09624
Polymers1,314,09624
Non-polymers00
Water00
1


  • Idetical with deposited unit
  • defined by author
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1

-
Components

+
50S ribosomal protein ... , 22 types, 22 molecules 0256CDEFGJKLNOPQRSTUXY

#1: Protein 50S ribosomal protein L32


Mass: 6745.073 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: O34687
#2: Protein/peptide 50S ribosomal protein L34


Mass: 5271.332 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: P05647
#3: Protein 50S ribosomal protein L1 / BL1


Mass: 25026.887 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: Q06797
#4: Protein 50S ribosomal protein L11 / BL11


Mass: 14951.442 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: Q06796
#7: Protein 50S ribosomal protein L2 / BL2


Mass: 30335.125 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: P42919
#8: Protein 50S ribosomal protein L3 / BL3


Mass: 22723.348 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: P42920
#9: Protein 50S ribosomal protein L4


Mass: 22424.951 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: P42921
#10: Protein 50S ribosomal protein L5 / BL6


Mass: 20177.564 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: P12877
#11: Protein 50S ribosomal protein L6 / BL10


Mass: 19543.389 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: P46898
#12: Protein 50S ribosomal protein L13


Mass: 16407.104 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: P70974
#13: Protein 50S ribosomal protein L14


Mass: 13175.288 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: P12875
#14: Protein 50S ribosomal protein L15


Mass: 15410.694 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: P19946
#15: Protein 50S ribosomal protein L17 / BL15 / BL21


Mass: 13774.806 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: P20277
#16: Protein 50S ribosomal protein L18 / BL16


Mass: 12993.829 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: P46899
#17: Protein 50S ribosomal protein L19


Mass: 13416.853 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: O31742
#18: Protein 50S ribosomal protein L20


Mass: 13669.189 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: P55873
#19: Protein 50S ribosomal protein L21 / BL20


Mass: 11296.081 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: P26908
#20: Protein 50S ribosomal protein L22


Mass: 12481.608 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: P42060
#21: Protein 50S ribosomal protein L23


Mass: 10978.813 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: P42924
#22: Protein 50S ribosomal protein L24 / 12 kDa DNA-binding protein / BL23 / HPB12


Mass: 11166.120 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: P0CI78
#23: Protein 50S ribosomal protein L29


Mass: 7728.029 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: P12873
#24: Protein 50S ribosomal protein L30 / BL27


Mass: 6650.795 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: UniProt: P19947

-
Ribosome RNA ... , 2 types, 2 molecules AB

#5: RNA chain ribosome RNA 23S


Mass: 949324.125 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: GenBank: AL009126.3
#6: RNA chain ribosome RNA 5S


Mass: 38423.863 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Bacillus subtilis (bacteria) / Strain: 168 / References: GenBank: AL009126.3

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Immature 50S subunit from YlqF-deficient Bacillus subtilis strain
Type: RIBOSOME
Buffer solutionName: 100mM NH4Cl, 20mM Tris-HCl, 10mM MgOAc2, 1mM TCEP. / pH: 7.5 / Details: 100mM NH4Cl, 20mM Tris-HCl, 10mM MgOAc2, 1mM TCEP.
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 100 % / Method: Blot for 20 seconds before plunging

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS / Date: Dec 6, 2011
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal magnification: 59000 X / Nominal defocus max: 4000 nm / Nominal defocus min: 1000 nm / Cs: 2.7 mm / Camera length: 0 mm
Specimen holderSpecimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER / Tilt angle max: 0 ° / Tilt angle min: 0 °
Image recordingElectron dose: 20 e/Å2 / Film or detector model: FEI EAGLE (4k x 4k)
Radiation wavelengthRelative weight: 1

-
Processing

EM software
IDNameCategory
1MDFFmodel fitting
2MODELLERmodel fitting
3modeRNAmodel fitting
4S2Smodel fitting
5RELION3D reconstruction
CTF correctionDetails: Each particle
SymmetryPoint symmetry: C1 (asymmetric)
3D reconstructionMethod: Reference projections / Resolution: 13.3 Å / Resolution method: OTHER / Num. of particles: 21020
Details: (Single particle details: This is one of the classified groups with the software RELION) (Single particle--Applied symmetry: C1)
Symmetry type: POINT
Atomic model building
IDProtocolSpaceTarget criteriaDetails
1FLEXIBLE FITREALCross-correlationMETHOD--Flexible fitting REFINEMENT PROTOCOL--Atom models of the 23S and 5S rRNAs were built using the software S2S and modeRNA, with the crystal structures of the 50S subunits from E. coli (PDB ID- 2AW4) and Thermus thermophilus (PDB ID- 2J01) as template. Models of ribosomal proteins, L1, L3, L4, L6, L10, L13, L14, L15, L17, L19, L20, L21, L22, L23, L24, L27, L29, L30, L31, L32, L33, L34, L35 and L36 were downloaded from the SWISS-MODEL Repository. The others, including L2, L5, L11, L16, L18 and L28 were modeled using MODELLER with crystal structures of E. coli and T. thermophilus 50S subunits as templates.The combined atomic model of the B. subtilis 50S subunit was docked into a high resolution mature 50S density map and optimized using MDFF. This optimized model was docked into the EM density using Chimera and flexible fitted into the density using MDFF. DETAILS--Ref- Schuwirth, B.S., Borovinskaya, M.A., Hau, C.W., Zhang, W., Vila-Sanjurjo, A., Holton, J.M. and Cate, J.H. (2005) Structures of the bacterial ribosome at 3.5 A resolution. Science, 310, 827-834. Selmer, M., Dunham, C.M., Murphy, F.V.t., Weixlbaumer, A., Petry, S., Kelley, A.C., Weir, J.R. and Ramakrishnan, V. (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science, 313, 1935-1942. Jossinet, F. and Westhof, E. (2005) Sequence to Structure (S2S)- display, manipulate and interconnect RNA data from sequence to structure. Bioinformatics, 21, 3320-3321. Rother, M., Rother, K., Puton, T. and Bujnicki, J.M. (2011) ModeRNA- a tool for comparative modeling of RNA 3D structure. Nucleic acids research, 39, 4007-4022. Kiefer, F., Arnold, K., Kunzli, M., Bordoli, L. and Schwede, T. (2009) The SWISS-MODEL Repository and associated resources. Nucleic acids research, 37, D387-392. Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M.Y., Pieper, U. and Sali, A. (2006) Comparative protein structure modeling using Modeller. Current protocols in bioinformatics / editoral board, Andreas D. Baxevanis ... [et al.], Chapter 5, Unit 5 6. Trabuco, L.G., Villa, E., Mitra, K., Frank, J. and Schulten, K. (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure, 16, 673-683. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C. and Ferrin, T.E. (2004) UCSF Chimera--a visualization system for exploratory research and analysis. Journal of computational chemistry, 25, 1605-1612.
2
Atomic model building
IDPDB-ID 3D fitting-IDAccession codeInitial refinement model-IDSource nameType
12J01

2j01
PDB Unreleased entry

12J011PDBexperimental model
22AW4

2aw4
PDB Unreleased entry

22AW42PDBexperimental model
Refinement stepCycle: LAST
ProteinNucleic acidLigandSolventTotal
Num. atoms21701 64456 0 0 86157

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more