[English] 日本語

- EMDB-53428: Cryo-EM structure of the human UBR4/KCMF1/CALM1 complex (CALM1 fo... -
+
Open data
-
Basic information
Entry | ![]() | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Cryo-EM structure of the human UBR4/KCMF1/CALM1 complex (CALM1 focused refinement) | |||||||||
![]() | ||||||||||
![]() |
| |||||||||
![]() | Ubiquitin ligase / protein quality control / LIGASE | |||||||||
Function / homology | ![]() negative regulation of HRI-mediated signaling / synaptic signaling / ubiquitin-dependent protein catabolic process via the N-end rule pathway / protein K27-linked ubiquitination / cytoplasm protein quality control by the ubiquitin-proteasome system / protein branched polyubiquitination / negative regulation of fatty acid biosynthetic process / endosome organization / cytoplasm protein quality control / protein K11-linked ubiquitination ...negative regulation of HRI-mediated signaling / synaptic signaling / ubiquitin-dependent protein catabolic process via the N-end rule pathway / protein K27-linked ubiquitination / cytoplasm protein quality control by the ubiquitin-proteasome system / protein branched polyubiquitination / negative regulation of fatty acid biosynthetic process / endosome organization / cytoplasm protein quality control / protein K11-linked ubiquitination / CaM pathway / Cam-PDE 1 activation / Sodium/Calcium exchangers / Calmodulin induced events / Reduction of cytosolic Ca++ levels / Activation of Ca-permeable Kainate Receptor / CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde / Loss of phosphorylation of MECP2 at T308 / CREB1 phosphorylation through the activation of Adenylate Cyclase / CaMK IV-mediated phosphorylation of CREB / PKA activation / negative regulation of high voltage-gated calcium channel activity / Glycogen breakdown (glycogenolysis) / CLEC7A (Dectin-1) induces NFAT activation / Activation of RAC1 downstream of NMDARs / negative regulation of ryanodine-sensitive calcium-release channel activity / organelle localization by membrane tethering / mitochondrion-endoplasmic reticulum membrane tethering / autophagosome membrane docking / negative regulation of calcium ion export across plasma membrane / regulation of cardiac muscle cell action potential / presynaptic endocytosis / Synthesis of IP3 and IP4 in the cytosol / regulation of cell communication by electrical coupling involved in cardiac conduction / Phase 0 - rapid depolarisation / Negative regulation of NMDA receptor-mediated neuronal transmission / calcineurin-mediated signaling / Unblocking of NMDA receptors, glutamate binding and activation / RHO GTPases activate PAKs / Ion transport by P-type ATPases / Uptake and function of anthrax toxins / regulation of ryanodine-sensitive calcium-release channel activity / tertiary granule membrane / Long-term potentiation / protein phosphatase activator activity / Calcineurin activates NFAT / Regulation of MECP2 expression and activity / ficolin-1-rich granule membrane / DARPP-32 events / protein K63-linked ubiquitination / catalytic complex / Smooth Muscle Contraction / detection of calcium ion / regulation of cardiac muscle contraction / RHO GTPases activate IQGAPs / regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion / protein K48-linked ubiquitination / cellular response to interferon-beta / Protein methylation / specific granule membrane / calcium channel inhibitor activity / presynaptic cytosol / Activation of AMPK downstream of NMDARs / Ion homeostasis / regulation of release of sequestered calcium ion into cytosol by sarcoplasmic reticulum / eNOS activation / titin binding / Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation / sperm midpiece / regulation of calcium-mediated signaling / voltage-gated potassium channel complex / calcium channel complex / positive regulation of autophagy / substantia nigra development / FCERI mediated Ca+2 mobilization / Ras activation upon Ca2+ influx through NMDA receptor / regulation of heart rate / FCGR3A-mediated IL10 synthesis / calyx of Held / Antigen activates B Cell Receptor (BCR) leading to generation of second messengers / adenylate cyclase activator activity / sarcomere / VEGFR2 mediated cell proliferation / protein serine/threonine kinase activator activity / regulation of cytokinesis / VEGFR2 mediated vascular permeability / spindle microtubule / Translocation of SLC2A4 (GLUT4) to the plasma membrane / calcium channel regulator activity / positive regulation of receptor signaling pathway via JAK-STAT / Stimuli-sensing channels / RAF activation / Transcriptional activation of mitochondrial biogenesis / response to calcium ion / RING-type E3 ubiquitin transferase / RAS processing / cellular response to type II interferon / G2/M transition of mitotic cell cycle / long-term synaptic potentiation / spindle pole Similarity search - Function | |||||||||
Biological species | ![]() | |||||||||
Method | single particle reconstruction / cryo EM / Resolution: 3.1 Å | |||||||||
![]() | Grabarczyk DB / Clausen T | |||||||||
Funding support | ![]()
| |||||||||
![]() | ![]() Title: Architecture of the UBR4 complex, a giant E4 ligase central to eukaryotic protein quality control. Authors: Daniel B Grabarczyk / Julian F Ehrmann / Paul Murphy / Woo Seok Yang / Robert Kurzbauer / Lillie E Bell / Luiza Deszcz / Jana Neuhold / Alexander Schleiffer / Alexandra Shulkina / Juyeon Lee ...Authors: Daniel B Grabarczyk / Julian F Ehrmann / Paul Murphy / Woo Seok Yang / Robert Kurzbauer / Lillie E Bell / Luiza Deszcz / Jana Neuhold / Alexander Schleiffer / Alexandra Shulkina / Juyeon Lee / Jin Seok Shin / Anton Meinhart / Gijs A Versteeg / Eszter Zavodszky / Hyun Kyu Song / Ramanujan S Hegde / Tim Clausen / ![]() ![]() ![]() Abstract: Eukaryotic cells have evolved sophisticated quality control mechanisms to eliminate aggregation-prone proteins that compromise cellular health. Central to this defense is the ubiquitin-proteasome ...Eukaryotic cells have evolved sophisticated quality control mechanisms to eliminate aggregation-prone proteins that compromise cellular health. Central to this defense is the ubiquitin-proteasome system, where UBR4 acts as an essential E4 ubiquitin ligase, amplifying degradation marks on defective proteins. Cryo-electron microscopy analysis of UBR4 in complex with its cofactors KCMF1 and CALM1 reveals a massive 1.3-megadalton ring structure, featuring a central substrate-binding arena and flexibly attached catalytic units. Our structure shows how UBR4 binds substrate and extends lysine-48-specific ubiquitin chains. Efficient substrate targeting depends on both preubiquitination and specific N-degrons, with KCMF1 acting as a key substrate filter. The architecture of the E4 megacomplex is conserved across eukaryotes, but species-specific adaptations allow UBR4 to perform its precisely tuned quality control function in diverse cellular environments. | |||||||||
History |
|
-
Structure visualization
Supplemental images |
---|
-
Downloads & links
-EMDB archive
Map data | ![]() | 199.5 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 25 KB 25 KB | Display Display | ![]() |
FSC (resolution estimation) | ![]() | 13.5 KB | Display | ![]() |
Images | ![]() | 29.9 KB | ||
Masks | ![]() | 216 MB | ![]() | |
Filedesc metadata | ![]() | 9.8 KB | ||
Others | ![]() ![]() | 171.9 MB 171.8 MB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Validation report
Summary document | ![]() | 934.4 KB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 934 KB | Display | |
Data in XML | ![]() | 20.9 KB | Display | |
Data in CIF | ![]() | 27.9 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 9qwuMC ![]() 9jniC ![]() 9lgsC ![]() 9qt9C ![]() 9qwsC ![]() 9qwxC ![]() 9qwzC ![]() 9qx0C ![]() 9qx1C ![]() 9qx2C ![]() 9qx5C ![]() 9upzC M: atomic model generated by this map C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 1.268 Å | ||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-Mask #1
File | ![]() | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: #1
File | emd_53428_half_map_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: #2
File | emd_53428_half_map_2.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-
Sample components
-Entire : Human UBR4/KCMF1/CALM1 complex
Entire | Name: Human UBR4/KCMF1/CALM1 complex |
---|---|
Components |
|
-Supramolecule #1: Human UBR4/KCMF1/CALM1 complex
Supramolecule | Name: Human UBR4/KCMF1/CALM1 complex / type: complex / ID: 1 / Parent: 0 / Macromolecule list: #1-#3 |
---|---|
Source (natural) | Organism: ![]() |
-Macromolecule #1: Calmodulin-1
Macromolecule | Name: Calmodulin-1 / type: protein_or_peptide / ID: 1 / Number of copies: 2 / Enantiomer: LEVO |
---|---|
Source (natural) | Organism: ![]() |
Molecular weight | Theoretical: 17.980717 KDa |
Recombinant expression | Organism: ![]() |
Sequence | String: MDYKDDDDKM ADQLTEEQIA EFKEAFSLFD KDGDGTITTK ELGTVMRSLG QNPTEAELQD MINEVDADGN GTIDFPEFLT MMARKMKDT DSEEEIREAF RVFDKDGNGY ISAAELRHVM TNLGEKLTDE EVDEMIREAD IDGDGQVNYE EFVQMMTAK UniProtKB: Calmodulin-1 |
-Macromolecule #2: E3 ubiquitin-protein ligase UBR4
Macromolecule | Name: E3 ubiquitin-protein ligase UBR4 / type: protein_or_peptide / ID: 2 / Number of copies: 2 / Enantiomer: LEVO / EC number: RING-type E3 ubiquitin transferase |
---|---|
Source (natural) | Organism: ![]() |
Molecular weight | Theoretical: 575.844 KDa |
Recombinant expression | Organism: ![]() |
Sequence | String: MATSGGEEAA AAAPAPGTPA TGADTTPGWE VAVRPLLSAS YSAFEMKELP QLVASVIESE SEILHHEKQY EPFYSSFVAL STHYITTVC SLIPRNQLQS VAAACKVLIE FSLLRLENPD EACAVSQKHL ILLIKGLCTG CSRLDRTEII TFTAMMKSAK L PQTVKTLS ...String: MATSGGEEAA AAAPAPGTPA TGADTTPGWE VAVRPLLSAS YSAFEMKELP QLVASVIESE SEILHHEKQY EPFYSSFVAL STHYITTVC SLIPRNQLQS VAAACKVLIE FSLLRLENPD EACAVSQKHL ILLIKGLCTG CSRLDRTEII TFTAMMKSAK L PQTVKTLS DVEDQKELAS PVSPELRQKE VQMNFLNQLT SVFNPRTVAS QPISTQTLVE GENDEQSSTD QASAIKTKNV FI AQNVASL QELGGSEKLL RVCLNLPYFL RYINRFQDAV LANSFFIMPA TVADATAVRN GFHSLVIDVT MALDTLSLPV LEP LNPSRL QDVTVLSLSC LYAGVSVATC MAILHVGSAQ QVRTGSTSSK EDDYESDAAT IVQKCLEIYD MIGQAISSSR RAGG EHYQN FQLLGAWCLL NSLFLILNLS PTALADKGKE KDPLAALRVR DILSRTKEGV GSPKLGPGKG HQGFGVLSVI LANHA IKLL TSLFQDLQVE ALHKGWETDG PPAALSIMAQ STSIQRIQRL IDSVPLMNLL LTLLSTSYRK ACVLQRQRKG SMSSDA SAS TDSNTYYEDD FSSTEEDSSQ DDDSEPILGQ WFEETISPSK EKAAPPPPPP PPPLESSPRV KSPSKQAPGE KGNILAS RK DPELFLGLAS NILNFITSSM LNSRNNFIRN YLSVSLSEHH MATLASIIKE VDKDGLKGSS DEEFAAALYH FNHSLVTS D LQSPNLQNTL LQQLGVAPFS EGPWPLYIHP QSLSVLSRLL LIWQHKASAQ GDPDVPECLK VWDRFLSTMK QNALQGVVP SETEDLNVEH LQMLLLIFHN FTETGRRAIL SLFVQIIQEL SVNMDAQMRF VPLILARLLL IFDYLLHQYS KAPVYLFEQV QHNLLSPPF GWASGSQDSN SRRATTPLYH GFKEVEENWS KHFSSDAVPH PRFYCVLSPE ASEDDLNRLD SVACDVLFSK L VKYDELYA ALTALLAAGS QLDTVRRKEN KNVTALEACA LQYYFLILWR ILGILPPSKT YINQLSMNSP EMSECDILHT LR WSSRLRI SSYVNWIKDH LIKQGMKAEH ASSLLELAST TKCSSVKYDV EIVEEYFARQ ISSFCSIDCT TILQLHEIPS LQS IYTLDA AISKVQVSLD EHFSKMAAET DPHKSSEITK NLLPATLQLI DTYASFTRAY LLQNFNEEGT TEKPSKEKLQ GFAA VLAIG SSRCKANTLG PTLVQNLPSS VQTVCESWNN INTNEFPNIG SWRNAFANDT IPSESYISAV QAAHLGTLCS QSLPL AASL KHTLLSLVRL TGDLIVWSDE MNPPQVIRTL LPLLLESSTE SVAEISSNSL ERILGPAESD EFLARVYEKL ITGCYN ILA NHADPNSGLD ESILEECLQY LEKQLESSQA RKAMEEFFSD SGELVQIMMA TANENLSAKF CNRVLKFFTK LFQLTEK SP NPSLLHLCGS LAQLACVEPV RLQAWLTRMT TSPPKDSDQL DVIQENRQLL QLLTTYIVRE NSQVGEGVCA VLLGTLTP M ATEMLANGDG TGFPELMVVM ATLASAGQGA GHLQLHNAAV DWLSRCKKYL SQKNVVEKLN ANVMHGKHVM ILECTCHIM SYLADVTNAL SQSNGQGPSH LSVDGEERAI EVDSDWVEEL AVEEEDSQAE DSDEDSLCNK LCTFTITQKE FMNQHWYHCH TCKMVDGVG VCTVCAKVCH KDHEISYAKY GSFFCDCGAK EDGSCLALVK RTPSSGMSST MKESAFQSEP RISESLVRHA S TSSPADKA KVTISDGKVA DEEKPKKSSL CRTVEGCREE LQNQANFSFA PLVLDMLNFL MDAIQTNFQQ ASAVGSSSRA QQ ALSELHT VEKAVEMTDQ LMVPTLGSQE GAFENVRMNY SGDQGQTIRQ LISAHVLRRV AMCVLSSPHG RRQHLAVSHE KGK ITVLQL SALLKQADSS KRKLTLTRLA SAPVPFTVLS LTGNPCKEDY LAVCGLKDCH VLTFSSSGSV SDHLVLHPQL ATGN FIIKA VWLPGSQTEL AIVTADFVKI YDLCVDALSP TFYFLLPSSK IRDVTFLFNE EGKNIIVIMS SAGYIYTQLM EEASS AQQG PFYVTNVLEI NHEDLKDSNS QVAGGGVSVY YSHVLQMLFF SYCQGKSFAA TISRTTLEVL QLFPINIKSS NGGSKT SPA LCQWSEVMNH PGLVCCVQQT TGVPLVVMVK PDTFLIQEIK TLPAKAKIQD MVAIRHTACN EQQRTTMILL CEDGSLR IY MANVENTSYW LQPSLQPSSV ISIMKPVRKR KTATITTRTS SQVTFPIDFF EHNQQLTDVE FGGNDLLQVY NAQQIKHR L NSTGMYVANT KPGGFTIEIS NNNSTMVMTG MRIQIGTQAI ERAPSYIEIF GRTMQLNLSR SRWFDFPFTR EEALQADKK LNLFIGASVD PAGVTMIDAV KIYGKTKEQF GWPDEPPEEF PSASVSNICP SNLNQSNGTG DSDSAAPTTT SGTVLERLVV SSLEALESC FAVGPIIEKE RNKNAAQELA TLLLSLPAPA SVQQQSKSLL ASLHTSRSAY HSHKDQALLS KAVQCLNTSS K EGKDLDPE VFQRLVITAR SIAIMRPNNL VHFTESKLPQ METEGMDEGK EPQKQLEGDC CSFITQLVNH FWKLHASKPK NA FLAPACL PGLTHIEATV NALVDIIHGY CTCELDCINT ASKIYMQMLL CPDPAVSFSC KQALIRVLRP RNKRRHVTLP SSP RSNTPM GDKDDDDDDD ADEKMQSSGI PNGGHIRQES QEQSEVDHGD FEMVSESMVL ETAENVNNGN PSPLEALLAG AEGF PPMLD IPPDADDETM VELAIALSLQ QDQQGSSSSA LGLQSLGLSG QAPSSSSLDA GTLSDTTASA PASDDEGSTA ATDGS TLRT SPADHGGSVG SESGGSAVDS VAGEHSVSGR SSAYGDATAE GHPAGPGSVS SSTGAISTTT GHQEGDGSEG EGEGET EGD VHTSNRLHMV RLMLLERLLQ TLPQLRNVGG VRAIPYMQVI LMLTTDLDGE DEKDKGALDN LLSQLIAELG MDKKDVS KK NERSALNEVH LVVMRLLSVF MSRTKSGSKS SICESSSLIS SATAAALLSS GAVDYCLHVL KSLLEYWKSQ QNDEEPVA T SQLLKPHTTS SPPDMSPFFL RQYVKGHAAD VFEAYTQLLT EMVLRLPYQI KKITDTNSRI PPPVFDHSWF YFLSEYLMI QQTPFVRRQV RKLLLFICGS KEKYRQLRDL HTLDSHVRGI KKLLEEQGIF LRASVVTASS GSALQYDTLI SLMEHLKACA EIAAQRTIN WQKFCIKDDS VLYFLLQVSF LVDEGVSPVL LQLLSCALCG SKVLAALAAS SGSSSASSSS APVAASSGQA T TQSKSSTK KSKKEEKEKE KDGETSGSQE DQLCTALVNQ LNKFADKETL IQFLRCFLLE SNSSSVRWQA HCLTLHIYRN SS KSQQELL LDLMWSIWPE LPAYGRKAAQ FVDLLGYFSL KTPQTEKKLK EYSQKAVEIL RTQNHILTNH PNSNIYNTLS GLV EFDGYY LESDPCLVCN NPEVPFCYIK LSSIKVDTRY TTTQQVVKLI GSHTISKVTV KIGDLKRTKM VRTINLYYNN RTVQ AIVEL KNKPARWHKA KKVQLTPGQT EVKIDLPLPI VASNLMIEFA DFYENYQAST ETLQCPRCSA SVPANPGVCG NCGEN VYQC HKCRSINYDE KDPFLCNACG FCKYARFDFM LYAKPCCAVD PIENEEDRKK AVSNINTLLD KADRVYHQLM GHRPQL ENL LCKVNEAAPE KPQDDSGTAG GISSTSASVN RYILQLAQEY CGDCKNSFDE LSKIIQKVFA SRKELLEYDL QQREAAT KS SRTSVQPTFT ASQYRALSVL GCGHTSSTKC YGCASAVTEH CITLLRALAT NPALRHILVS QGLIRELFDY NLRRGAAA M REEVRQLMCL LTRDNPEATQ QMNDLIIGKV STALKGHWAN PDLASSLQYE MLLLTDSISK EDSCWELRLR CALSLFLMA VNIKTPVVVE NITLMCLRIL QKLIKPPAPT SKKNKDVPVE ALTTVKPYCN EIHAQAQLWL KRDPKASYDA WKKCLPIRGI DGNGKAPSK SELRHLYLTE KYVWRWKQFL SRRGKRTSPL DLKLGHNNWL RQVLFTPATQ AARQAACTIV EALATIPSRK Q QVLDLLTS YLDELSIAGE CAAEYLALYQ KLITSAHWKV YLAARGVLPY VGNLITKEIA RLLALEEATL STDLQQGYAL KS LTGLLSS FVEVESIKRH FKSRLVGTVL NGYLCLRKLV VQRTKLIDET QDMLLEMLED MTTGTESETK AFMAVCIETA KRY NLDDYR TPVFIFERLC SIIYPEENEV TEFFVTLEKD PQQEDFLQGR MPGNPYSSNE PGIGPLMRDI KNKICQDCDL VALL EDDSG MELLVNNKII SLDLPVAEVY KKVWCTTNEG EPMRIVYRMR GLLGDATEEF IESLDSTTDE EEDEEEVYKM AGVMA QCGG LECMLNRLAG IRDFKQGRHL LTVLLKLFSY CVKVKVNRQQ LVKLEMNTLN VMLGTLNLAL VAEQESKDSG GAAVAE QVL SIMEIILDES NAEPLSEDKG NLLLTGDKDQ LVMLLDQINS TFVRSNPSVL QGLLRIIPYL SFGEVEKMQI LVERFKP YC NFDKYDEDHS GDDKVFLDCF CKIAAGIKNN SNGHQLKDLI LQKGITQNAL DYMKKHIPSA KNLDADIWKK FLSRPALP F ILRLLRGLAI QHPGTQVLIG TDSIPNLHKL EQVSSDEGIG TLAENLLEAL REHPDVNKKI DAARRETRAE KKRMAMAMR QKALGTLGMT TNEKGQVVTK TALLKQMEEL IEEPGLTCCI CREGYKFQPT KVLGIYTFTK RVALEEMENK PRKQQGYSTV SHFNIVHYD CHLAAVRLAR GREEWESAAL QNANTKCNGL LPVWGPHVPE SAFATCLARH NTYLQECTGQ REPTYQLNIH D IKLLFLRF AMEQSFSADT GGGGRESNIH LIPYIIHTVL YVLNTTRATS REEKNLQGFL EQPKEKWVES AFEVDGPYYF TV LALHILP PEQWRATRVE ILRRLLVTSQ ARAVAPGGAT RLTDKAVKDY SAYRSSLLFW ALVDLIYNMF KKVPTSNTEG GWS CSLAEY IRHNDMPIYE AADKALKTFQ EEFMPVETFS EFLDVAGLLS EITDPESFLK DLLNSVPHHH HHHHHHH UniProtKB: E3 ubiquitin-protein ligase UBR4 |
-Macromolecule #3: E3 ubiquitin-protein ligase KCMF1
Macromolecule | Name: E3 ubiquitin-protein ligase KCMF1 / type: protein_or_peptide / ID: 3 / Number of copies: 2 / Enantiomer: LEVO / EC number: RING-type E3 ubiquitin transferase |
---|---|
Source (natural) | Organism: ![]() |
Molecular weight | Theoretical: 43.192648 KDa |
Recombinant expression | Organism: ![]() |
Sequence | String: MSRHEGVSCD ACLKGNFRGR RYKCLICYDY DLCASCYESG ATTTRHTTDH PMQCILTRVD FDLYYGGEAF SVEQPQSFTC PYCGKMGYT ETSLQEHVTS EHAETSTEVI CPICAALPGG DPNHVTDDFA AHLTLEHRAP RDLDESSGVR HVRRMFHPGR G LGGPRARR ...String: MSRHEGVSCD ACLKGNFRGR RYKCLICYDY DLCASCYESG ATTTRHTTDH PMQCILTRVD FDLYYGGEAF SVEQPQSFTC PYCGKMGYT ETSLQEHVTS EHAETSTEVI CPICAALPGG DPNHVTDDFA AHLTLEHRAP RDLDESSGVR HVRRMFHPGR G LGGPRARR SNMHFTSSST GGLSSSQSSY SPSNREAMDP IAELLSQLSG VRRSAGGQLN SSGPSASQLQ QLQMQLQLER QH AQAARQQ LETARNATRR TNTSSVTTTI TQSTATTNIA NTESSQQTLQ NSQFLLTRLN DPKMSETERQ SMESERADRS LFV QELLLS TLVREESSSS DEDDRGEMAD FGAMGCVDIM PLDVALENLN LKESNKGNEP PPPPLSAWSH PQFEK UniProtKB: E3 ubiquitin-protein ligase KCMF1 |
-Macromolecule #4: ZINC ION
Macromolecule | Name: ZINC ION / type: ligand / ID: 4 / Number of copies: 2 / Formula: ZN |
---|---|
Molecular weight | Theoretical: 65.409 Da |
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Buffer | pH: 7.5 |
---|---|
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy
Microscope | TFS KRIOS |
---|---|
Image recording | Film or detector model: FEI FALCON IV (4k x 4k) / Average electron dose: 50.0 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Nominal defocus max: 2.0 µm / Nominal defocus min: 0.8 µm |
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |