+
Open data
-
Basic information
Entry | ![]() | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Cryo-EM structure of mouse PMCA captured in E2-P state (BEF3) | |||||||||
![]() | ||||||||||
![]() |
| |||||||||
![]() | Calcium pump / Ptype-Atpase / MEMBRANE PROTEIN | |||||||||
Function / homology | ![]() otolith mineralization / cerebellar Purkinje cell layer morphogenesis / inner ear receptor cell differentiation / Reduction of cytosolic Ca++ levels / cGMP metabolic process / Ion transport by P-type ATPases / cerebellar granule cell differentiation / calcium-dependent ATPase activity / cerebellar Purkinje cell differentiation / photoreceptor ribbon synapse ...otolith mineralization / cerebellar Purkinje cell layer morphogenesis / inner ear receptor cell differentiation / Reduction of cytosolic Ca++ levels / cGMP metabolic process / Ion transport by P-type ATPases / cerebellar granule cell differentiation / calcium-dependent ATPase activity / cerebellar Purkinje cell differentiation / photoreceptor ribbon synapse / P-type Ca2+ transporter / P-type calcium transporter activity / detection of mechanical stimulus involved in sensory perception of sound / serotonin metabolic process / Ion homeostasis / positive regulation of calcium ion transport / locomotion / auditory receptor cell stereocilium organization / dendritic spine membrane / inner ear morphogenesis / neuromuscular process controlling balance / regulation of cell size / inner ear development / cochlea development / regulation of cytosolic calcium ion concentration / lactation / cerebellum development / PDZ domain binding / locomotory behavior / establishment of localization in cell / sensory perception of sound / synapse organization / neuron cellular homeostasis / regulation of synaptic plasticity / cell morphogenesis / neuron differentiation / intracellular calcium ion homeostasis / calcium ion transport / presynaptic membrane / basolateral plasma membrane / calmodulin binding / neuron projection / cilium / apical plasma membrane / neuronal cell body / calcium ion binding / glutamatergic synapse / endoplasmic reticulum / ATP hydrolysis activity / ATP binding / plasma membrane / cytoplasm Similarity search - Function | |||||||||
Biological species | ![]() ![]() | |||||||||
Method | single particle reconstruction / cryo EM / Resolution: 3.52 Å | |||||||||
![]() | Vinayagam D / Raunser S / Sistel O / Schulte U / Constantin CE / Prumbaum D / Zolles G / Fakler B | |||||||||
Funding support | ![]()
| |||||||||
![]() | ![]() Title: Molecular mechanism of ultrafast transport by plasma membrane Ca-ATPases. Authors: Deivanayagabarathy Vinayagam / Oleg Sitsel / Uwe Schulte / Cristina E Constantin / Wout Oosterheert / Daniel Prumbaum / Gerd Zolles / Bernd Fakler / Stefan Raunser / ![]() ![]() Abstract: Tight control of intracellular Ca levels is fundamental as they are used to control numerous signal transduction pathways. Plasma membrane Ca-ATPases (PMCAs) have a crucial role in this process by ...Tight control of intracellular Ca levels is fundamental as they are used to control numerous signal transduction pathways. Plasma membrane Ca-ATPases (PMCAs) have a crucial role in this process by extruding Ca against a steep concentration gradient from the cytosol to the extracellular space. Although new details of PMCA biology are constantly being uncovered, the structural basis of the most distinguishing features of these pumps, namely, transport rates in the kilohertz range and regulation of activity by the plasma membrane phospholipid PtdIns(4,5)P, has so far remained elusive. Here we present the structures of mouse PMCA2 in the presence and absence of its accessory subunit neuroplastin in eight different stages of its transport cycle. Combined with whole-cell recordings that accurately track PMCA-mediated Ca extrusion in intact cells, these structures enable us to establish the first comprehensive transport model for a PMCA, reveal the role of disease-causing mutations and uncover the structural underpinnings of regulatory PMCA-phospholipid interaction. The transport cycle-dependent dynamics of PtdIns(4,5)P are fundamental for its role as a 'latch' promoting the fast release of Ca and opening a passageway for counter-ions. These actions are required for maintaining the ultra-fast transport cycle. Moreover, we identify the PtdIns(4,5)P-binding site as an unanticipated target for drug-mediated manipulation of intracellular Ca levels. Our work provides detailed structural insights into the uniquely fast operation of native PMCA-type Ca pumps and its control by membrane lipids and drugs. | |||||||||
History |
|
-
Structure visualization
Supplemental images |
---|
-
Downloads & links
-EMDB archive
Map data | ![]() | 97 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 24.8 KB 24.8 KB | Display Display | ![]() |
Images | ![]() | 89.6 KB | ||
Filedesc metadata | ![]() | 7.7 KB | ||
Others | ![]() ![]() | 95.7 MB 95.7 MB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Validation report
Summary document | ![]() | 783.6 KB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 783.2 KB | Display | |
Data in XML | ![]() | 13.4 KB | Display | |
Data in CIF | ![]() | 15.9 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 9gsyMC ![]() 9gsdC ![]() 9gseC ![]() 9gsfC ![]() 9gsgC ![]() 9gshC ![]() 9gsiC ![]() 9gtbC ![]() 9gtiC M: atomic model generated by this map C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 0.91 Å | ||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-Half map: #2
File | emd_51558_half_map_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: #1
File | emd_51558_half_map_2.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-
Sample components
-Entire : mouse PMCA captured in E2-P state (BEF3)
Entire | Name: mouse PMCA captured in E2-P state (BEF3) |
---|---|
Components |
|
-Supramolecule #1: mouse PMCA captured in E2-P state (BEF3)
Supramolecule | Name: mouse PMCA captured in E2-P state (BEF3) / type: complex / ID: 1 / Parent: 0 / Macromolecule list: #1 Details: prepared as separate cDNAs for transient (co)transfection of tsA201 nptn/basi double KO cells |
---|---|
Source (natural) | Organism: ![]() ![]() |
Molecular weight | Theoretical: 180 KDa |
-Macromolecule #1: Plasma membrane calcium-transporting ATPase 2
Macromolecule | Name: Plasma membrane calcium-transporting ATPase 2 / type: protein_or_peptide / ID: 1 / Number of copies: 1 / Enantiomer: LEVO / EC number: P-type Ca2+ transporter |
---|---|
Source (natural) | Organism: ![]() ![]() |
Molecular weight | Theoretical: 134.647141 KDa |
Recombinant expression | Organism: ![]() |
Sequence | String: MGDMTNSDFY SKNQRNESSH GGEFGCTMEE LRSLMELRGT EAVVKIKETY GDTEAICRRL KTSPVEGLPG TAPDLEKRKQ IFGQNFIPP KKPKTFLQLV WEALQDVTLI ILEIAAIISL GLSFYHPPGE SNEGCATAQG GAEDEGEAEA GWIEGAAILL S VICVVLVT ...String: MGDMTNSDFY SKNQRNESSH GGEFGCTMEE LRSLMELRGT EAVVKIKETY GDTEAICRRL KTSPVEGLPG TAPDLEKRKQ IFGQNFIPP KKPKTFLQLV WEALQDVTLI ILEIAAIISL GLSFYHPPGE SNEGCATAQG GAEDEGEAEA GWIEGAAILL S VICVVLVT AFNDWSKEKQ FRGLQSRIEQ EQKFTVVRAG QVVQIPVAEI VVGDIAQIKY GDLLPADGLF IQGNDLKIDE SS LTGESDQ VRKSVDKDPM LLSGTHVMEG SGRMVVTAVG VNSQTGIIFT LLGAGGEEEE KKDKKAKQQD GAAAMEMQPL KSA EGGDAD DKKKANMHKK EKSVLQGKLT KLAVQIGKAG LVMSAITVII LVLYFTVDTF VVNKKPWLTE CTPVYVQYFV KFFI IGVTV LVVAVPEGLP LAVTISLAYS VKKMMKDNNL VRHLDACETM GNATAICSDK TGTLTTNRMT VVQAYVGDVH YKEIP DPSS INAKTLELLV NAIAINSAYT TKILPPEKEG ALPRQVGNKT ECGLLGFVLD LRQDYEPVRS QMPEEKLYKV YTFNSV RKS MSTVIKMPDE SFRMYSKGAS EIVLKKCCKI LSGAGEARVF RPRDRDEMVK KVIEPMACDG LRTICVAYRD FPSSPEP DW DNENDILNEL TCICVVGIED PVRPEVPEAI RKCQRAGITV RMVTGDNINT ARAIAIKCGI IHPGEDFLCL EGKEFNRR I RNEKGEIEQE RIDKIWPKLR VLARSSPTDK HTLVKGIIDS THTEQRQVVA VTGDGTNDGP ALKKADVGFA MGIAGTDVA KEASDIILTD DNFSSIVKAV MWGRNVYDSI SKFLQFQLTV NVVAVIVAFT GACITQDSPL KAVQMLWVNL IMDTFASLAL ATEPPTETL LLRKPYGRNK PLISRTMMKN ILGHAVYQLT LIFTLLFVGE KMFQIDSGRN APLHSPPSEH YTIIFNTFVM M QLFNEINA RKIHGERNVF DGIFRNPIFC TIVLGTFAIQ IVIVQFGGKP FSCSPLQLDQ WMWCIFIGLG ELVWGQVIAT IP TSRLKFL KEAGRLTQKE EIPEEELNED VEEIDHAERE LRRGQILWFR GLNRIQTQIR VVKAFRSSLY EGLEKPESRT SIH NFMAHP EFRIEDSQPH IPLIDDTDLE EDAALKQNSS PPSSLNKNNS AIDSGINLTT DTSKSATSSS PGSPIHSLET SLEN LYFQG GDYKDDDDK UniProtKB: Plasma membrane calcium-transporting ATPase 2 |
-Macromolecule #2: BERYLLIUM TRIFLUORIDE ION
Macromolecule | Name: BERYLLIUM TRIFLUORIDE ION / type: ligand / ID: 2 / Number of copies: 1 / Formula: BEF |
---|---|
Molecular weight | Theoretical: 66.007 Da |
Chemical component information | ![]() ChemComp-BEF: |
-Macromolecule #3: MAGNESIUM ION
Macromolecule | Name: MAGNESIUM ION / type: ligand / ID: 3 / Number of copies: 1 / Formula: MG |
---|---|
Molecular weight | Theoretical: 24.305 Da |
-Macromolecule #4: (2S)-1-{[(R)-hydroxy{[(1R,2R,3S,4R,5R,6S)-2,3,6-trihydroxy-4,5-bi...
Macromolecule | Name: (2S)-1-{[(R)-hydroxy{[(1R,2R,3S,4R,5R,6S)-2,3,6-trihydroxy-4,5-bis(phosphonooxy)cyclohexyl]oxy}phosphoryl]oxy}-3-(octadecanoyloxy)propan-2-yl icosa-5,8,11,14-tetraenoate type: ligand / ID: 4 / Number of copies: 1 / Formula: KXP |
---|---|
Molecular weight | Theoretical: 1.047088 KDa |
Chemical component information | ![]() ChemComp-KXP: |
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Concentration | 2.0 mg/mL |
---|---|
Buffer | pH: 7.4 / Details: Tris 20mM NaCl 150mM |
Grid | Model: Quantifoil R1.2/1.3 / Material: COPPER / Mesh: 300 / Support film - Material: CARBON / Support film - topology: CONTINUOUS / Pretreatment - Type: GLOW DISCHARGE / Pretreatment - Time: 60 sec. |
Vitrification | Cryogen name: ETHANE / Chamber humidity: 95 % / Chamber temperature: 277 K / Instrument: FEI VITROBOT MARK IV |
Details | The complex was monodisperse |
-
Electron microscopy
Microscope | TFS KRIOS |
---|---|
Temperature | Min: 93.0 K / Max: 113.0 K |
Specialist optics | Energy filter - Name: GIF Bioquantum / Energy filter - Slit width: 20 eV |
Image recording | Film or detector model: GATAN K3 (6k x 4k) / Number real images: 13134 / Average exposure time: 3.5 sec. / Average electron dose: 57.0 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | C2 aperture diameter: 50.0 µm / Calibrated magnification: 105000 / Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Cs: 2.7 mm / Nominal defocus max: 2.5 µm / Nominal defocus min: 1.1 µm / Nominal magnification: 55000 |
Sample stage | Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER / Cooling holder cryogen: NITROGEN |
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |