+
Open data
-
Basic information
Entry | ![]() | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Modifying region of EcPKS1 | |||||||||
![]() | Sharpened Map to 3.5A for C-terminal modifying region of EcPKS1 | |||||||||
![]() |
| |||||||||
![]() | polyketide adenosyl transferase / beta-keto-synthase dehydratase / keto-reductase / Acyl carrier protein / BIOSYNTHETIC PROTEIN | |||||||||
Biological species | ![]() | |||||||||
Method | single particle reconstruction / cryo EM / Resolution: 3.5 Å | |||||||||
![]() | Schubert HL / Hill CP | |||||||||
Funding support | ![]()
| |||||||||
![]() | ![]() Title: The structure of full-length AFPK supports the ACP linker in a role that regulates iterative polyketide and fatty acid assembly. Authors: Heidi L Schubert / Feng Li / Christopher P Hill / Eric W Schmidt / ![]() Abstract: The polyketide synthases (PKSs) in microbes and the cytoplasmic fatty acid synthases in humans (FASs) are related enzymes that have been well studied. As a result, there is a paradigm explaining in ...The polyketide synthases (PKSs) in microbes and the cytoplasmic fatty acid synthases in humans (FASs) are related enzymes that have been well studied. As a result, there is a paradigm explaining in general terms how FASs repeatedly use a set of enzymatic domains to produce simple fats, while PKSs use the domains in a much more complex manner to produce pharmaceuticals and other elaborate molecules. However, most animals also have PKSs that do not conform to the rules described in microbes, including a large family of enzymes that bridge fatty acid and polyketide metabolism, the animal FAS-like PKSs (AFPKs). Here, we present the cryoelectron microscopy structures of two AFPKs from sea slugs. While the AFPK resemble mammalian FASs, their chemical products mimic those of PKSs in complexity. How then does the architecture of AFPKs facilitate this structural complexity? Unexpectedly, chemical complexity is controlled not solely by the enzymatic domains but is aided by the dynamics of the acyl carrier protein (ACP), a shuttle that moves intermediates between these domains. We observed interactions between enzyme domains and the linker-ACP domain, which, when manipulated, altered the kinetic properties of the enzyme to change the resulting chemical products. This unveils elaborate mechanisms and enzyme motions underlying lipid and polyketide biochemistry across the domains of life. | |||||||||
History |
|
-
Structure visualization
Supplemental images |
---|
-
Downloads & links
-EMDB archive
Map data | ![]() | 483.1 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 22 KB 22 KB | Display Display | ![]() |
FSC (resolution estimation) | ![]() | 17 KB | Display | ![]() |
Images | ![]() | 149.2 KB | ||
Masks | ![]() | 512 MB | ![]() | |
Filedesc metadata | ![]() | 8 KB | ||
Others | ![]() ![]() ![]() | 252.5 MB 474.6 MB 474.6 MB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 9cq9MC ![]() 9cq1C ![]() 9ctiC ![]() 9ctkC ![]() 9ctlC ![]() 9ctmC ![]() 9ctnC ![]() 9ctoC C: citing same article ( M: atomic model generated by this map |
---|
-
Links
EMDB pages | ![]() ![]() |
---|
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | Sharpened Map to 3.5A for C-terminal modifying region of EcPKS1 | ||||||||||||||||||||||||||||||||||||
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 0.53 Å | ||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-Mask #1
File | ![]() | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-Additional map: unsharpened map
File | emd_45812_additional_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | unsharpened map | ||||||||||||
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: Half B
File | emd_45812_half_map_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | Half B | ||||||||||||
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: Half A
File | emd_45812_half_map_2.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | Half A | ||||||||||||
Projections & Slices |
| ||||||||||||
Density Histograms |
-
Sample components
-Entire : modifying region of homodimer of EcPKS1
Entire | Name: modifying region of homodimer of EcPKS1 |
---|---|
Components |
|
-Supramolecule #1: modifying region of homodimer of EcPKS1
Supramolecule | Name: modifying region of homodimer of EcPKS1 / type: complex / ID: 1 / Parent: 0 / Macromolecule list: all |
---|---|
Source (natural) | Organism: ![]() |
Molecular weight | Theoretical: 350 KDa |
-Macromolecule #1: Polyketide synthase 1
Macromolecule | Name: Polyketide synthase 1 / type: protein_or_peptide / ID: 1 / Number of copies: 2 / Enantiomer: LEVO |
---|---|
Source (natural) | Organism: ![]() |
Molecular weight | Theoretical: 249.323984 KDa |
Recombinant expression | Organism: ![]() ![]() |
Sequence | String: MAPNNTQQEE ASKGGNSSPE AYLPYSGDIA IAGISGRYPE SDSVGEFRDN LFGKVNMLTC DDRRWKLGHL DLPDVLGKLR SVDRFDSEF FNLNSKQTEM LDPQTRLLLE VCYEAIVDAG ESLASVKGSR TGMYLAISSS EPEQAWICRQ DPYIVMGCPH T MSPNRISF ...String: MAPNNTQQEE ASKGGNSSPE AYLPYSGDIA IAGISGRYPE SDSVGEFRDN LFGKVNMLTC DDRRWKLGHL DLPDVLGKLR SVDRFDSEF FNLNSKQTEM LDPQTRLLLE VCYEAIVDAG ESLASVKGSR TGMYLAISSS EPEQAWICRQ DPYIVMGCPH T MSPNRISF FFDLHGPSIA YDTACSSVLV ALEAAFQHMR TGVIDSAIVA GVNTCFRALT SKVYQNMGML GPEACKAFDS SG NGYARSE IVSALFLKKS SDSKRIYCSV VNVKTNNDGF TPQGLTFPSG EIQEQLMRNV YADCKLNPKE VSYFECHGTG TPA GDPQET NAIYRVMCTP DKREPLLIGS VKSNMGHAET GSAMASITKV ILAMHEGFIA PNLHFRSPNP KIEGLRDGKM AVVT EATPW SGGYMAINSF GMGGSNAHAV LRSYDVSSSK PHPSAHKPRL FTYSARTEHG LRAILREAQT HAASMEFHAL CQASA DAPL GSMPYRGATI LNGQHDFEVV EKCKSKAREV WFIYAGMGSQ WVGMARCLMQ LDVFRHSLEK SAAVLKPHGV DLLNIL SEG TEDTLRTILN PFVCITSIQV ALTDLLWSMG IRPDGIVGHS MGEVGCAYCD GCLTAEEAVL TAYWRGKCVT DGKVPPG KM AAVGLTWEEA KSQCPAGVVP ACHNAEDSVT ISGAADVMLK FMEELKAKDV FVREVNSSNI AYHSYFMENI YASLKDSL S KVISPKPRTA RWLPTSVPEE LWDSAPAQSS SAEFHANNLV SPVLFHEALQ KIPPTAIAIE LAPHGLLQSV IKRTLGNES VCVGLQKRNY ADNLEFLFAS LGKCFANGLS LNPLACYPPV EFPVPKGTPR LSDMVAGAWD HSAQWLVPKN EDFEGRVQAS GSDSSYSID VSADSPDRYL LDHQVDGREL FPACGCLVLA WKTLAALNGR DFEQMPVRLS RVEIHQAMFL PKSGSATVTV S VMPRTGEF QVCENENLLA SGFVTCPDKD VLETSTHAQT RSSLQDRPAT EVLTRDEVYR ELILRGYEYG PYFQGILRAS VD GQESEIT WDGRWVSFMD SVLQMDILAR PGDYQMLPIK FQSINIDPRV QPAAPAEDED VVVLPGRFDP VLDIVSAGGV EIR GLETIS ASRRLTHAPE VVEEYRFVPH HVTGRDDPGA KRPGATVDIR EYADACLAFA VQGIKKWLSE DKDKVLPQKD LLQD ALGLA NQDLGSKSSS SDFISAKAAL ERILKQQNGH QQHGFGLFHT LNLAFSEPLE IGFRETLKNK IHHMRYDMWD DCLMS AVEC ADSLKLCIDT VAENTTSHIV NVLEAGAAKG AFYRRAIPEA LAKFSGKDYR YTVGDASPMD DAKEFSVKTL QFDAYD PAN FPASQAHAHD LLVLKWVLHQ QEDLDAAMAG FCGFVRPGGF ILVQEFVHRL PTLLAVEAVT DHPLPRKSGD RVLGRYY SA AQWRELFRRH GLVEVIHRSD GALADMFLLR SRVEVMTPPT VLHLDDLSCS WLEEVKAKYS DLEAMPQDAR LWLVGKSD C NGMLGFFNCL RQEPGSERVR CVQVCGDSVP DLSPGSAEFK YLAEMDLAFN VHKDGKWGVY RHLAITDDQR RQQFPTEHA FVDTLTSGDL STLTWVRSPL NLHASSEKGQ DCELCTVYMA GVVSRDLALA CGKLRRDELP AGMFCKEGTL GIEFSGRDTK GKRVMGLCA PPALASSVLC LRSSLWSVPQ HWSLEEAATV PVAYSTAYYA LVIRGHVRPG DTVLVHAGGS PVGQAAIAVA Q SCGCEIFI STATDAETSS LKSMFPRLKD RNFCSCKDAS FERHVKKETS GKGVDIILNC TTGELLGASI RLLASRGRFL NL ASGRGSD AELVFSGSGR RDTSFHDINL DTLIDAQGPE WTELTSLVQK GIQSGLVKPL ARTVYAMDRL VDVFKLLEEG AQA GKLLVK IREEEAEKIT LPAKKTFEAV PRTFFHPAKS YVIVGGLGGF GLELAHWMVL RGVRKLVLTS RNGITTGYQT RKIA FLRSL GADIVVCAVN VTSQAAADRL VKTATDLGPL GGVFNLGLNL RDALLVEQTA ENYKQTLEAK IQTTSLLDGI SRSPK IQPT LDHFVMFSSL SAGHGIPGQT NYGWGNSYMD RLCEKRRAQG LPGLSIQWAS IADVGFVGTK GNNVVIEGKW PQRMYN CLQ VCDYFLSQNR PVVACHVLAE KVKAAVEGEE TVGQQVIKAV GNVLGLKSVS GVDPDKVFLD LGLDSLMSVE IKQMLER DL DLALGTKDIQ MLTFAQLQAM VQHVHHHHHH |
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Concentration | 6.5 mg/mL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Buffer | pH: 7.5 Component:
Details: pH measured at 4 degrees C | ||||||||||
Grid | Model: Quantifoil R1.2/1.3 / Material: GOLD / Mesh: 300 / Support film - Material: GOLD / Support film - topology: HOLEY ARRAY / Pretreatment - Type: GLOW DISCHARGE / Pretreatment - Time: 25 sec. / Pretreatment - Atmosphere: AIR | ||||||||||
Vitrification | Cryogen name: ETHANE / Chamber humidity: 80 % / Chamber temperature: 278 K / Instrument: LEICA EM GP / Details: single application, single blot. |
-
Electron microscopy
Microscope | TFS KRIOS |
---|---|
Image recording | Film or detector model: GATAN K2 SUMMIT (4k x 4k) / Detector mode: COUNTING / Average electron dose: 40.0 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | C2 aperture diameter: 50.0 µm / Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Cs: 2.8 mm / Nominal defocus max: 2.2 µm / Nominal defocus min: 0.8 µm |
Sample stage | Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER / Cooling holder cryogen: NITROGEN |
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
+
Image processing
-Atomic model buiding 1
Initial model | Chain - Source name: AlphaFold / Chain - Initial model type: in silico model |
---|---|
Refinement | Space: REAL / Protocol: RIGID BODY FIT |
Output model | ![]() PDB-9cq9: |