[English] 日本語

- EMDB-44232: GluA2 flip Q in complex with TARPgamma2 at pH8, consensus structu... -
+
Open data
-
Basic information
Entry | ![]() | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | GluA2 flip Q in complex with TARPgamma2 at pH8, consensus structure of LBD-TMD-TARPgamma2 | |||||||||||||||
![]() | GluA2-flip-Q in complex with TARPgamma2 at pH8 (LBD-TMD-STG) | |||||||||||||||
![]() |
| |||||||||||||||
![]() | AMPA receptor / ionotropic glutamate receptor / ion channel / auxiliary subunit / TRANSPORT PROTEIN | |||||||||||||||
Function / homology | ![]() Presynaptic depolarization and calcium channel opening / LGI-ADAM interactions / Trafficking of AMPA receptors / eye blink reflex / positive regulation of protein localization to basolateral plasma membrane / cerebellar mossy fiber / regulation of AMPA receptor activity / postsynaptic neurotransmitter receptor diffusion trapping / membrane hyperpolarization / nervous system process ...Presynaptic depolarization and calcium channel opening / LGI-ADAM interactions / Trafficking of AMPA receptors / eye blink reflex / positive regulation of protein localization to basolateral plasma membrane / cerebellar mossy fiber / regulation of AMPA receptor activity / postsynaptic neurotransmitter receptor diffusion trapping / membrane hyperpolarization / nervous system process / protein targeting to membrane / voltage-gated calcium channel complex / neurotransmitter receptor localization to postsynaptic specialization membrane / neuromuscular junction development / spine synapse / dendritic spine neck / dendritic spine head / Activation of AMPA receptors / perisynaptic space / AMPA glutamate receptor activity / transmission of nerve impulse / ligand-gated monoatomic cation channel activity / Trafficking of GluR2-containing AMPA receptors / response to lithium ion / immunoglobulin binding / AMPA glutamate receptor complex / kainate selective glutamate receptor activity / ionotropic glutamate receptor complex / cellular response to glycine / extracellularly glutamate-gated ion channel activity / membrane depolarization / asymmetric synapse / regulation of receptor recycling / regulation of postsynaptic membrane neurotransmitter receptor levels / Unblocking of NMDA receptors, glutamate binding and activation / positive regulation of synaptic transmission / glutamate receptor binding / voltage-gated calcium channel activity / glutamate-gated receptor activity / regulation of synaptic transmission, glutamatergic / response to fungicide / cytoskeletal protein binding / presynaptic active zone membrane / ionotropic glutamate receptor binding / dendrite membrane / glutamate-gated calcium ion channel activity / extracellular ligand-gated monoatomic ion channel activity / somatodendritic compartment / cellular response to brain-derived neurotrophic factor stimulus / ligand-gated monoatomic ion channel activity involved in regulation of presynaptic membrane potential / dendrite cytoplasm / ionotropic glutamate receptor signaling pathway / SNARE binding / hippocampal mossy fiber to CA3 synapse / dendritic shaft / transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potential / regulation of membrane potential / synaptic transmission, glutamatergic / PDZ domain binding / protein tetramerization / synaptic membrane / modulation of chemical synaptic transmission / establishment of protein localization / postsynaptic density membrane / terminal bouton / Schaffer collateral - CA1 synapse / cerebral cortex development / receptor internalization / response to calcium ion / synaptic vesicle membrane / synaptic vesicle / signaling receptor activity / presynapse / amyloid-beta binding / presynaptic membrane / growth cone / scaffold protein binding / chemical synaptic transmission / perikaryon / postsynaptic membrane / dendritic spine / postsynaptic density / neuron projection / axon / neuronal cell body / dendrite / synapse / protein-containing complex binding / protein kinase binding / glutamatergic synapse / cell surface / endoplasmic reticulum / protein-containing complex / identical protein binding / membrane / plasma membrane Similarity search - Function | |||||||||||||||
Biological species | ![]() ![]() ![]() ![]() | |||||||||||||||
Method | single particle reconstruction / cryo EM / Resolution: 2.71 Å | |||||||||||||||
![]() | Nakagawa T / Greger IH | |||||||||||||||
Funding support | ![]() ![]()
| |||||||||||||||
![]() | ![]() Title: Proton-triggered rearrangement of the AMPA receptor N-terminal domains impacts receptor kinetics and synaptic localization. Authors: Josip Ivica / Nejc Kejzar / Hinze Ho / Imogen Stockwell / Viktor Kuchtiak / Alexander M Scrutton / Terunaga Nakagawa / Ingo H Greger / ![]() ![]() ![]() Abstract: AMPA glutamate receptors (AMPARs) are ion channel tetramers that mediate the majority of fast excitatory synaptic transmission. They are composed of four subunits (GluA1-GluA4); the GluA2 subunit ...AMPA glutamate receptors (AMPARs) are ion channel tetramers that mediate the majority of fast excitatory synaptic transmission. They are composed of four subunits (GluA1-GluA4); the GluA2 subunit dominates AMPAR function throughout the forebrain. Its extracellular N-terminal domain (NTD) determines receptor localization at the synapse, ensuring reliable synaptic transmission and plasticity. This synaptic anchoring function requires a compact NTD tier, stabilized by a GluA2-specific NTD interface. Here we show that low pH conditions, which accompany synaptic activity, rupture this interface. All-atom molecular dynamics simulations reveal that protonation of an interfacial histidine residue (H208) centrally contributes to NTD rearrangement. Moreover, in stark contrast to their canonical compact arrangement at neutral pH, GluA2 cryo-electron microscopy structures exhibit a wide spectrum of NTD conformations under acidic conditions. We show that the consequences of this pH-dependent conformational control are twofold: rupture of the NTD tier slows recovery from desensitized states and increases receptor mobility at mouse hippocampal synapses. Therefore, a proton-triggered NTD switch will shape both AMPAR location and kinetics, thereby impacting synaptic signal transmission. | |||||||||||||||
History |
|
-
Structure visualization
Supplemental images |
---|
-
Downloads & links
-EMDB archive
Map data | ![]() | 167 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 24.9 KB 24.9 KB | Display Display | ![]() |
FSC (resolution estimation) | ![]() | 12.8 KB | Display | ![]() |
Images | ![]() | 241.7 KB | ||
Filedesc metadata | ![]() | 7.2 KB | ||
Others | ![]() ![]() ![]() ![]() | 166.7 MB 166.4 MB 140.8 MB 140.8 MB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Validation report
Summary document | ![]() | 854.3 KB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 853.9 KB | Display | |
Data in XML | ![]() | 20.1 KB | Display | |
Data in CIF | ![]() | 26.7 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 9b5zMC ![]() 9b60C ![]() 9b61C ![]() 9b63C ![]() 9b64C ![]() 9b67C ![]() 9b68C ![]() 9b69C ![]() 9b6aC M: atomic model generated by this map C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | GluA2-flip-Q in complex with TARPgamma2 at pH8 (LBD-TMD-STG) | ||||||||||||||||||||||||||||||||||||
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 0.82 Å | ||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-Additional map: GluA2-flip-Q in complex with TARPgamma2 at pH8 (LBD-TMD-STG,...
File | emd_44232_additional_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | GluA2-flip-Q in complex with TARPgamma2 at pH8 (LBD-TMD-STG, map sharpenning B-factor = -77.8) | ||||||||||||
Projections & Slices |
| ||||||||||||
Density Histograms |
-Additional map: This map is the outcome of the focused...
File | emd_44232_additional_2.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | This map is the outcome of the focused refinement of the NTD of the GluA2-flip-Q in complex with TARPgamma2 at pH8 | ||||||||||||
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: Half1 map: GluA2-flip-Q in complex with TARPgamma2 at...
File | emd_44232_half_map_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | Half1 map: GluA2-flip-Q in complex with TARPgamma2 at pH8 (LBD-TMD-STG) | ||||||||||||
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: Half2 map: GluA2-flip-Q in complex with TARPgamma2 at...
File | emd_44232_half_map_2.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | Half2 map: GluA2-flip-Q in complex with TARPgamma2 at pH8 (LBD-TMD-STG) | ||||||||||||
Projections & Slices |
| ||||||||||||
Density Histograms |
-
Sample components
-Entire : GluA2 (flip-Q isoform) in complex with TARPgamma2 at 4:4 stoichiometry
Entire | Name: GluA2 (flip-Q isoform) in complex with TARPgamma2 at 4:4 stoichiometry |
---|---|
Components |
|
-Supramolecule #1: GluA2 (flip-Q isoform) in complex with TARPgamma2 at 4:4 stoichiometry
Supramolecule | Name: GluA2 (flip-Q isoform) in complex with TARPgamma2 at 4:4 stoichiometry type: complex / ID: 1 / Parent: 0 / Macromolecule list: all |
---|---|
Molecular weight | Theoretical: 500 KDa |
-Macromolecule #1: Voltage-dependent calcium channel gamma-2 subunit
Macromolecule | Name: Voltage-dependent calcium channel gamma-2 subunit / type: protein_or_peptide / ID: 1 / Number of copies: 4 / Enantiomer: LEVO |
---|---|
Source (natural) | Organism: ![]() ![]() |
Molecular weight | Theoretical: 35.938746 KDa |
Recombinant expression | Organism: ![]() |
Sequence | String: MGLFDRGVQM LLTTVGAFAA FSLMTIAVGT DYWLYSRGVC KTKSVSENET SKKNEEVMTH SGLWRTCCLE GNFKGLCKQI DHFPEDADY EADTAEYFLR AVRASSIFPI LSVILLFMGG LCIAASEFYK TRHNIILSAG IFFVSAGLSN IIGIIVYISA N AGDPSKSD ...String: MGLFDRGVQM LLTTVGAFAA FSLMTIAVGT DYWLYSRGVC KTKSVSENET SKKNEEVMTH SGLWRTCCLE GNFKGLCKQI DHFPEDADY EADTAEYFLR AVRASSIFPI LSVILLFMGG LCIAASEFYK TRHNIILSAG IFFVSAGLSN IIGIIVYISA N AGDPSKSD SKKNSYSYGW SFYFGALSFI IAEMVGVLAV HMFIDRHKQL RATARATDYL QASAITRIPS YRYRYQRRSR SS SRSTEPS HSRDASPVGV KGFNTLPSTE ISMYTLSRDP LKAATTPTAT YNSDRDNSFL QVHNCIQKDS KDSLHANTAN RRT TPV UniProtKB: Voltage-dependent calcium channel gamma-2 subunit |
-Macromolecule #2: Isoform Flip of Glutamate receptor 2
Macromolecule | Name: Isoform Flip of Glutamate receptor 2 / type: protein_or_peptide / ID: 2 Details: rat GluA2 flip Q isoform. FLAG epitope tag is located near the C-terminus Number of copies: 4 / Enantiomer: LEVO |
---|---|
Source (natural) | Organism: ![]() ![]() |
Molecular weight | Theoretical: 99.617492 KDa |
Recombinant expression | Organism: ![]() |
Sequence | String: MQKIMHISVL LSPVLWGLIF GVSSNSIQIG GLFPRGADQE YSAFRVGMVQ FSTSEFRLTP HIDNLEVANS FAVTNAFCSQ FSRGVYAIF GFYDKKSVNT ITSFCGTLHV SFITPSFPTD GTHPFVIQMR PDLKGALLSL IEYYQWDKFA YLYDSDRGLS T LQAVLDSA ...String: MQKIMHISVL LSPVLWGLIF GVSSNSIQIG GLFPRGADQE YSAFRVGMVQ FSTSEFRLTP HIDNLEVANS FAVTNAFCSQ FSRGVYAIF GFYDKKSVNT ITSFCGTLHV SFITPSFPTD GTHPFVIQMR PDLKGALLSL IEYYQWDKFA YLYDSDRGLS T LQAVLDSA AEKKWQVTAI NVGNINNDKK DETYRSLFQD LELKKERRVI LDCERDKVND IVDQVITIGK HVKGYHYIIA NL GFTDGDL LKIQFGGANV SGFQIVDYDD SLVSKFIERW STLEEKEYPG AHTATIKYTS ALTYDAVQVM TEAFRNLRKQ RIE ISRRGN AGDCLANPAV PWGQGVEIER ALKQVQVEGL SGNIKFDQNG KRINYTINIM ELKTNGPRKI GYWSEVDKMV VTLT ELPSG NDTSGLENKT VVVTTILESP YVMMKKNHEM LEGNERYEGY CVDLAAEIAK HCGFKYKLTI VGDGKYGARD ADTKI WNGM VGELVYGKAD IAIAPLTITL VREEVIDFSK PFMSLGISIM IKKPQKSKPG VFSFLDPLAY EIWMCIVFAY IGVSVV LFL VSRFSPYEWH TEEFEDGRET QSSESTNEFG IFNSLWFSLG AFMQQGCDIS PRSLSGRIVG GVWWFFTLII ISSYTAN LA AFLTVERMVS PIESAEDLSK QTEIAYGTLD SGSTKEFFRR SKIAVFDKMW TYMRSAEPSV FVRTTAEGVA RVRKSKGK Y AYLLESTMNE YIEQRKPCDT MKVGGNLDSK GYDIATPKGS SLGTPVNLAV LKLSEQGVLD KLKNKWWYDK GECGAKDSG SKEKTSALSL SNVAGVFYIL VGGLGLAMLV ALIEFCYKSR AEAKRMKVAK NPQNINPSSS QNSQNFATDY KDDDDKEGYN VYGIESVKI UniProtKB: Glutamate receptor 2 |
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Concentration | 10 mg/mL | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Buffer | pH: 8 Component:
Details: Tris adjusted to pH 8 using HCl | ||||||||||||
Grid | Model: Quantifoil R1.2/1.3 / Material: COPPER / Mesh: 300 / Support film - Material: CARBON / Support film - topology: HOLEY ARRAY / Pretreatment - Type: GLOW DISCHARGE / Pretreatment - Time: 30 sec. | ||||||||||||
Vitrification | Cryogen name: ETHANE / Chamber humidity: 100 % / Chamber temperature: 277.15 K / Instrument: FEI VITROBOT MARK IV |
-
Electron microscopy
Microscope | TFS KRIOS |
---|---|
Image recording | Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k) / Number grids imaged: 1 / Number real images: 21898 / Average electron dose: 52.8 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Nominal defocus max: 2.4 µm / Nominal defocus min: 1.0 µm |
Sample stage | Cooling holder cryogen: NITROGEN |
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |