+
Open data
-
Basic information
Entry | ![]() | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | avb8/L-TGF-b1/GARP | |||||||||
![]() | L-TGF-b1/GARP/avb8 | |||||||||
![]() |
| |||||||||
![]() | Integrin / Complex / SIGNALING PROTEIN | |||||||||
Function / homology | ![]() establishment of protein localization to extracellular region / ganglioside metabolic process / hard palate development / Langerhans cell differentiation / integrin alphav-beta8 complex / integrin alphav-beta6 complex / transforming growth factor beta production / negative regulation of entry of bacterium into host cell / integrin alphav-beta5 complex / secondary palate development ...establishment of protein localization to extracellular region / ganglioside metabolic process / hard palate development / Langerhans cell differentiation / integrin alphav-beta8 complex / integrin alphav-beta6 complex / transforming growth factor beta production / negative regulation of entry of bacterium into host cell / integrin alphav-beta5 complex / secondary palate development / extracellular matrix protein binding / opsonin binding / integrin alphav-beta1 complex / Cross-presentation of particulate exogenous antigens (phagosomes) / placenta blood vessel development / Laminin interactions / negative regulation of lipoprotein metabolic process / integrin alphav-beta3 complex / receptor ligand inhibitor activity / entry into host cell by a symbiont-containing vacuole / alphav-beta3 integrin-PKCalpha complex / alphav-beta3 integrin-HMGB1 complex / negative regulation of lipid transport / regulation of phagocytosis / : / Elastic fibre formation / alphav-beta3 integrin-IGF-1-IGF1R complex / transforming growth factor beta binding / positive regulation of small GTPase mediated signal transduction / filopodium membrane / extracellular matrix binding / apolipoprotein A-I-mediated signaling pathway / apoptotic cell clearance / wound healing, spreading of epidermal cells / integrin complex / heterotypic cell-cell adhesion / cartilage development / negative regulation of cytokine production / Molecules associated with elastic fibres / Mechanical load activates signaling by PIEZO1 and integrins in osteocytes / negative chemotaxis / cell adhesion mediated by integrin / Syndecan interactions / microvillus membrane / cell-substrate adhesion / positive regulation of osteoblast proliferation / negative regulation of activated T cell proliferation / endodermal cell differentiation / PECAM1 interactions / TGF-beta receptor signaling activates SMADs / positive regulation of intracellular signal transduction / lamellipodium membrane / fibronectin binding / negative regulation of macrophage derived foam cell differentiation / negative regulation of lipid storage / ECM proteoglycans / Integrin cell surface interactions / voltage-gated calcium channel activity / vasculogenesis / specific granule membrane / coreceptor activity / extrinsic apoptotic signaling pathway in absence of ligand / phagocytic vesicle / ERK1 and ERK2 cascade / extracellular matrix / positive regulation of cell adhesion / transforming growth factor beta receptor signaling pathway / substrate adhesion-dependent cell spreading / protein kinase C binding / Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZO1 and integrins in endothelial cells / cell-matrix adhesion / Signal transduction by L1 / integrin-mediated signaling pathway / negative regulation of extrinsic apoptotic signaling pathway / negative regulation of transforming growth factor beta receptor signaling pathway / calcium ion transmembrane transport / cell-cell adhesion / response to virus / VEGFA-VEGFR2 Pathway / ruffle membrane / positive regulation of angiogenesis / integrin binding / cell migration / virus receptor activity / positive regulation of cytosolic calcium ion concentration / protease binding / angiogenesis / cell adhesion / immune response / positive regulation of cell migration / symbiont entry into host cell / external side of plasma membrane / negative regulation of gene expression / focal adhesion / positive regulation of cell population proliferation / Neutrophil degranulation / positive regulation of gene expression / cell surface / extracellular space / extracellular exosome Similarity search - Function | |||||||||
Biological species | ![]() | |||||||||
Method | single particle reconstruction / cryo EM / Resolution: 3.2 Å | |||||||||
![]() | Jin M / Cheng Y / Nishimura SL | |||||||||
Funding support | ![]()
| |||||||||
![]() | ![]() Title: Dynamic allostery drives autocrine and paracrine TGF-β signaling. Authors: Mingliang Jin / Robert I Seed / Guoqing Cai / Tiffany Shing / Li Wang / Saburo Ito / Anthony Cormier / Stephanie A Wankowicz / Jillian M Jespersen / Jody L Baron / Nicholas D Carey / Melody ...Authors: Mingliang Jin / Robert I Seed / Guoqing Cai / Tiffany Shing / Li Wang / Saburo Ito / Anthony Cormier / Stephanie A Wankowicz / Jillian M Jespersen / Jody L Baron / Nicholas D Carey / Melody G Campbell / Zanlin Yu / Phu K Tang / Pilar Cossio / Weihua Wen / Jianlong Lou / James Marks / Stephen L Nishimura / Yifan Cheng / ![]() Abstract: TGF-β, essential for development and immunity, is expressed as a latent complex (L-TGF-β) non-covalently associated with its prodomain and presented on immune cell surfaces by covalent association ...TGF-β, essential for development and immunity, is expressed as a latent complex (L-TGF-β) non-covalently associated with its prodomain and presented on immune cell surfaces by covalent association with GARP. Binding to integrin αvβ8 activates L-TGF-β1/GARP. The dogma is that mature TGF-β must physically dissociate from L-TGF-β1 for signaling to occur. Our previous studies discovered that αvβ8-mediated TGF-β autocrine signaling can occur without TGF-β1 release from its latent form. Here, we show that mice engineered to express TGF-β1 that cannot release from L-TGF-β1 survive without early lethal tissue inflammation, unlike those with TGF-β1 deficiency. Combining cryogenic electron microscopy with cell-based assays, we reveal a dynamic allosteric mechanism of autocrine TGF-β1 signaling without release where αvβ8 binding redistributes the intrinsic flexibility of L-TGF-β1 to expose TGF-β1 to its receptors. Dynamic allostery explains the TGF-β3 latency/activation mechanism and why TGF-β3 functions distinctly from TGF-β1, suggesting that it broadly applies to other flexible cell surface receptor/ligand systems. | |||||||||
History |
|
-
Structure visualization
Supplemental images |
---|
-
Downloads & links
-EMDB archive
Map data | ![]() | 483.3 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 18.1 KB 18.1 KB | Display Display | ![]() |
Images | ![]() | 94.9 KB | ||
Filedesc metadata | ![]() | 7.1 KB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 8vsdMC ![]() 8vs6C ![]() 8vsbC ![]() 8vscC C: citing same article ( M: atomic model generated by this map |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | L-TGF-b1/GARP/avb8 | ||||||||||||||||||||||||||||||||||||
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 1.1742 Å | ||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-
Sample components
+Entire : avb8/L-TGF-b1/GARP complex
+Supramolecule #1: avb8/L-TGF-b1/GARP complex
+Supramolecule #2: avb8 complex
+Supramolecule #3: L-TGF-b1/GARP complex
+Macromolecule #1: Transforming growth factor beta activator LRRC32
+Macromolecule #2: Integrin alpha-V heavy chain
+Macromolecule #3: Integrin beta-8
+Macromolecule #4: Transforming growth factor beta-1 proprotein
+Macromolecule #7: 2-acetamido-2-deoxy-beta-D-glucopyranose
+Macromolecule #8: CALCIUM ION
+Macromolecule #9: MAGNESIUM ION
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Buffer | pH: 7.4 |
---|---|
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy
Microscope | FEI TITAN KRIOS |
---|---|
Image recording | Film or detector model: GATAN K3 (6k x 4k) / Average electron dose: 68.0 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Nominal defocus max: 2.5 µm / Nominal defocus min: 0.8 µm |
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
-
Image processing
Startup model | Type of model: NONE |
---|---|
Final reconstruction | Resolution.type: BY AUTHOR / Resolution: 3.2 Å / Resolution method: FSC 0.143 CUT-OFF / Number images used: 46771 |
Initial angle assignment | Type: NOT APPLICABLE |
Final angle assignment | Type: NOT APPLICABLE |