[English] 日本語
Yorodumi- EMDB-36180: Structure of the Human cytoplasmic Ribosome with human tRNA Tyr(G... -
+Open data
-Basic information
Entry | Database: EMDB / ID: EMD-36180 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | Structure of the Human cytoplasmic Ribosome with human tRNA Tyr(GalQ34) and mRNA(UAU) (non-rotated state) | ||||||||||||
Map data | |||||||||||||
Sample |
| ||||||||||||
Keywords | tRNA modifications / decoding / RIBOSOME | ||||||||||||
Function / homology | Function and homology information eukaryotic 80S initiation complex / negative regulation of protein neddylation / : / translation at presynapse / negative regulation of endoplasmic reticulum unfolded protein response / axial mesoderm development / ribosomal protein import into nucleus / oxidized pyrimidine DNA binding / response to TNF agonist / positive regulation of base-excision repair ...eukaryotic 80S initiation complex / negative regulation of protein neddylation / : / translation at presynapse / negative regulation of endoplasmic reticulum unfolded protein response / axial mesoderm development / ribosomal protein import into nucleus / oxidized pyrimidine DNA binding / response to TNF agonist / positive regulation of base-excision repair / protein tyrosine kinase inhibitor activity / positive regulation of respiratory burst involved in inflammatory response / negative regulation of formation of translation preinitiation complex / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage / positive regulation of gastrulation / nucleolus organization / 90S preribosome assembly / regulation of adenylate cyclase-activating G protein-coupled receptor signaling pathway / IRE1-RACK1-PP2A complex / positive regulation of endodeoxyribonuclease activity / positive regulation of Golgi to plasma membrane protein transport / TNFR1-mediated ceramide production / TORC2 complex binding / negative regulation of RNA splicing / negative regulation of DNA repair / GAIT complex / negative regulation of intrinsic apoptotic signaling pathway in response to hydrogen peroxide / supercoiled DNA binding / oxidized purine DNA binding / NF-kappaB complex / middle ear morphogenesis / neural crest cell differentiation / ubiquitin-like protein conjugating enzyme binding / regulation of establishment of cell polarity / negative regulation of phagocytosis / A band / positive regulation of ubiquitin-protein transferase activity / rRNA modification in the nucleus and cytosol / alpha-beta T cell differentiation / erythrocyte homeostasis / Formation of the ternary complex, and subsequently, the 43S complex / cytoplasmic side of rough endoplasmic reticulum membrane / regulation of G1 to G0 transition / exit from mitosis / laminin receptor activity / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator / regulation of translation involved in cellular response to UV / protein-DNA complex disassembly / pigmentation / positive regulation of DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediator / protein kinase A binding / negative regulation of ubiquitin protein ligase activity / optic nerve development / Ribosomal scanning and start codon recognition / ion channel inhibitor activity / response to aldosterone / retinal ganglion cell axon guidance / Translation initiation complex formation / homeostatic process / mammalian oogenesis stage / positive regulation of mitochondrial depolarization / G1 to G0 transition / macrophage chemotaxis / activation-induced cell death of T cells / positive regulation of T cell receptor signaling pathway / lung morphogenesis / iron-sulfur cluster binding / fibroblast growth factor binding / negative regulation of Wnt signaling pathway / positive regulation of activated T cell proliferation / male meiosis I / monocyte chemotaxis / Protein hydroxylation / negative regulation of peptidyl-serine phosphorylation / regulation of cell division / BH3 domain binding / SARS-CoV-1 modulates host translation machinery / mTORC1-mediated signalling / Peptide chain elongation / positive regulation of intrinsic apoptotic signaling pathway by p53 class mediator / cysteine-type endopeptidase activator activity involved in apoptotic process / Selenocysteine synthesis / positive regulation of signal transduction by p53 class mediator / Formation of a pool of free 40S subunits / blastocyst development / ubiquitin ligase inhibitor activity / Eukaryotic Translation Termination / phagocytic cup / negative regulation of respiratory burst involved in inflammatory response / Response of EIF2AK4 (GCN2) to amino acid deficiency / SRP-dependent cotranslational protein targeting to membrane / Viral mRNA Translation / protein localization to nucleus / negative regulation of phosphatidylinositol 3-kinase/protein kinase B signal transduction / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / GTP hydrolysis and joining of the 60S ribosomal subunit / L13a-mediated translational silencing of Ceruloplasmin expression / TOR signaling / endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / T cell proliferation involved in immune response Similarity search - Function | ||||||||||||
Biological species | Homo sapiens (human) | ||||||||||||
Method | single particle reconstruction / cryo EM / Resolution: 2.42 Å | ||||||||||||
Authors | Ishiguro K / Yokoyama T / Shirouzu M / Suzuki T | ||||||||||||
Funding support | Japan, 3 items
| ||||||||||||
Citation | Journal: Cell / Year: 2023 Title: Glycosylated queuosines in tRNAs optimize translational rate and post-embryonic growth. Authors: Xuewei Zhao / Ding Ma / Kensuke Ishiguro / Hironori Saito / Shinichiro Akichika / Ikuya Matsuzawa / Mari Mito / Toru Irie / Kota Ishibashi / Kimi Wakabayashi / Yuriko Sakaguchi / Takeshi ...Authors: Xuewei Zhao / Ding Ma / Kensuke Ishiguro / Hironori Saito / Shinichiro Akichika / Ikuya Matsuzawa / Mari Mito / Toru Irie / Kota Ishibashi / Kimi Wakabayashi / Yuriko Sakaguchi / Takeshi Yokoyama / Yuichiro Mishima / Mikako Shirouzu / Shintaro Iwasaki / Takeo Suzuki / Tsutomu Suzuki / Abstract: Transfer RNA (tRNA) modifications are critical for protein synthesis. Queuosine (Q), a 7-deaza-guanosine derivative, is present in tRNA anticodons. In vertebrate tRNAs for Tyr and Asp, Q is further ...Transfer RNA (tRNA) modifications are critical for protein synthesis. Queuosine (Q), a 7-deaza-guanosine derivative, is present in tRNA anticodons. In vertebrate tRNAs for Tyr and Asp, Q is further glycosylated with galactose and mannose to generate galQ and manQ, respectively. However, biogenesis and physiological relevance of Q-glycosylation remain poorly understood. Here, we biochemically identified two RNA glycosylases, QTGAL and QTMAN, and successfully reconstituted Q-glycosylation of tRNAs using nucleotide diphosphate sugars. Ribosome profiling of knockout cells revealed that Q-glycosylation slowed down elongation at cognate codons, UAC and GAC (GAU), respectively. We also found that galactosylation of Q suppresses stop codon readthrough. Moreover, protein aggregates increased in cells lacking Q-glycosylation, indicating that Q-glycosylation contributes to proteostasis. Cryo-EM of human ribosome-tRNA complex revealed the molecular basis of codon recognition regulated by Q-glycosylations. Furthermore, zebrafish qtgal and qtman knockout lines displayed shortened body length, implying that Q-glycosylation is required for post-embryonic growth in vertebrates. | ||||||||||||
History |
|
-Structure visualization
Supplemental images |
---|
-Downloads & links
-EMDB archive
Map data | emd_36180.map.gz | 516.7 MB | EMDB map data format | |
---|---|---|---|---|
Header (meta data) | emd-36180-v30.xml emd-36180.xml | 104.3 KB 104.3 KB | Display Display | EMDB header |
FSC (resolution estimation) | emd_36180_fsc.xml | 18.7 KB | Display | FSC data file |
Images | emd_36180.png | 78.1 KB | ||
Filedesc metadata | emd-36180.cif.gz | 21.3 KB | ||
Others | emd_36180_additional_1.map.gz emd_36180_half_map_1.map.gz emd_36180_half_map_2.map.gz | 455.4 MB 456.7 MB 456.6 MB | ||
Archive directory | http://ftp.pdbj.org/pub/emdb/structures/EMD-36180 ftp://ftp.pdbj.org/pub/emdb/structures/EMD-36180 | HTTPS FTP |
-Validation report
Summary document | emd_36180_validation.pdf.gz | 1.1 MB | Display | EMDB validaton report |
---|---|---|---|---|
Full document | emd_36180_full_validation.pdf.gz | 1.1 MB | Display | |
Data in XML | emd_36180_validation.xml.gz | 26.2 KB | Display | |
Data in CIF | emd_36180_validation.cif.gz | 34.9 KB | Display | |
Arichive directory | https://ftp.pdbj.org/pub/emdb/validation_reports/EMD-36180 ftp://ftp.pdbj.org/pub/emdb/validation_reports/EMD-36180 | HTTPS FTP |
-Related structure data
Related structure data | 8jdlMC 7y7cC 7y7dC 7y7eC 7y7fC 7y7gC 7y7hC 8jdjC 8jdkC 8jdmC M: atomic model generated by this map C: citing same article (ref.) |
---|---|
Similar structure data | Similarity search - Function & homologyF&H Search |
-Links
EMDB pages | EMDB (EBI/PDBe) / EMDataResource |
---|---|
Related items in Molecule of the Month |
-Map
File | Download / File: emd_36180.map.gz / Format: CCP4 / Size: 567.9 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 0.83 Å | ||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-Additional map: before postprocess
File | emd_36180_additional_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | before postprocess | ||||||||||||
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: #2
File | emd_36180_half_map_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: #1
File | emd_36180_half_map_2.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-Sample components
+Entire : The complex of Human 80S Ribosome with mRNA and P- site tRNA
+Supramolecule #1: The complex of Human 80S Ribosome with mRNA and P- site tRNA
+Macromolecule #1: mRNA
+Macromolecule #2: tRNA (Tyr)
+Macromolecule #3: 28S ribosomal RNA
+Macromolecule #4: 5S ribosomal RNA
+Macromolecule #5: 5.8S ribosomal RNA
+Macromolecule #48: 18S ribosomal RNA
+Macromolecule #6: 60S ribosomal protein L8
+Macromolecule #7: 60S ribosomal protein L3
+Macromolecule #8: 60S ribosomal protein L4
+Macromolecule #9: 60S ribosomal protein L5
+Macromolecule #10: 60S ribosomal protein L6
+Macromolecule #11: 60S ribosomal protein L7
+Macromolecule #12: 60S ribosomal protein L7a
+Macromolecule #13: 60S ribosomal protein L9
+Macromolecule #14: 60S ribosomal protein L10-like
+Macromolecule #15: 60S ribosomal protein L11
+Macromolecule #16: 60S ribosomal protein L13
+Macromolecule #17: 60S ribosomal protein L14
+Macromolecule #18: 60S ribosomal protein L15
+Macromolecule #19: 60S ribosomal protein L13a
+Macromolecule #20: 60S ribosomal protein L17
+Macromolecule #21: 60S ribosomal protein L18
+Macromolecule #22: 60S ribosomal protein L19
+Macromolecule #23: 60S ribosomal protein L18a
+Macromolecule #24: 60S ribosomal protein L21
+Macromolecule #25: 60S ribosomal protein L22
+Macromolecule #26: 60S ribosomal protein L23
+Macromolecule #27: 60S ribosomal protein L24
+Macromolecule #28: 60S ribosomal protein L23a
+Macromolecule #29: 60S ribosomal protein L26
+Macromolecule #30: 60S ribosomal protein L27
+Macromolecule #31: 60S ribosomal protein L27a
+Macromolecule #32: 60S ribosomal protein L29
+Macromolecule #33: 60S ribosomal protein L30
+Macromolecule #34: 60S ribosomal protein L31
+Macromolecule #35: 60S ribosomal protein L32
+Macromolecule #36: 60S ribosomal protein L35a
+Macromolecule #37: 60S ribosomal protein L34
+Macromolecule #38: 60S ribosomal protein L35
+Macromolecule #39: 60S ribosomal protein L36
+Macromolecule #40: 60S ribosomal protein L37
+Macromolecule #41: 60S ribosomal protein L38
+Macromolecule #42: 60S ribosomal protein L39
+Macromolecule #43: Ubiquitin-60S ribosomal protein L40
+Macromolecule #44: 60S ribosomal protein L41
+Macromolecule #45: 60S ribosomal protein L36a
+Macromolecule #46: 60S ribosomal protein L37a
+Macromolecule #47: 60S ribosomal protein L28
+Macromolecule #49: 40S ribosomal protein SA
+Macromolecule #50: 40S ribosomal protein S3a
+Macromolecule #51: 40S ribosomal protein S2
+Macromolecule #52: 40S ribosomal protein S3
+Macromolecule #53: 40S ribosomal protein S4, X isoform
+Macromolecule #54: 40S ribosomal protein S5
+Macromolecule #55: 40S ribosomal protein S6
+Macromolecule #56: 40S ribosomal protein S7
+Macromolecule #57: 40S ribosomal protein S8
+Macromolecule #58: 40S ribosomal protein S9
+Macromolecule #59: 40S ribosomal protein S10
+Macromolecule #60: 40S ribosomal protein S11
+Macromolecule #61: 40S ribosomal protein S13
+Macromolecule #62: 40S ribosomal protein S14
+Macromolecule #63: 40S ribosomal protein S15
+Macromolecule #64: 40S ribosomal protein S16
+Macromolecule #65: 40S ribosomal protein S17
+Macromolecule #66: 40S ribosomal protein S18
+Macromolecule #67: 40S ribosomal protein S19
+Macromolecule #68: 40S ribosomal protein S20
+Macromolecule #69: 40S ribosomal protein S21
+Macromolecule #70: 40S ribosomal protein S15a
+Macromolecule #71: 40S ribosomal protein S23
+Macromolecule #72: 40S ribosomal protein S24
+Macromolecule #73: 40S ribosomal protein S25
+Macromolecule #74: 40S ribosomal protein S26
+Macromolecule #75: 40S ribosomal protein S27
+Macromolecule #76: 40S ribosomal protein S28
+Macromolecule #77: 40S ribosomal protein S29
+Macromolecule #78: 40S ribosomal protein S30
+Macromolecule #79: Receptor of activated protein C kinase 1
+Macromolecule #80: MAGNESIUM ION
+Macromolecule #81: beta-D-galactopyranose
+Macromolecule #82: ZINC ION
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
Processing | single particle reconstruction |
Aggregation state | particle |
-Sample preparation
Buffer | pH: 7.4 Component:
Details: The Buffer pH was adjusted to 7.4 using KOH. | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vitrification | Cryogen name: ETHANE / Chamber humidity: 100 % / Chamber temperature: 277 K / Instrument: FEI VITROBOT MARK IV | ||||||||||||
Details | 24nM ribosomes were incubated with 500nM tRNAs and mRNA |
-Electron microscopy
Microscope | FEI TITAN KRIOS |
---|---|
Image recording | Film or detector model: GATAN K3 (6k x 4k) / Number grids imaged: 2 / Number real images: 32000 / Average electron dose: 50.0 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN |
Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Nominal defocus max: 2.5 µm / Nominal defocus min: 0.5 µm |
Experimental equipment | Model: Titan Krios / Image courtesy: FEI Company |