[English] 日本語

- EMDB-32807: Cryo-EM structure of a human pre-40S ribosomal subunit - State RR... -
+
Open data
-
Basic information
Entry | ![]() | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Cryo-EM structure of a human pre-40S ribosomal subunit - State RRP12-B3 | |||||||||
![]() | ||||||||||
![]() |
| |||||||||
![]() | ribosome biogenesis / 40S ribosome / RIBOSOME | |||||||||
Function / homology | ![]() positive regulation of ribosomal small subunit export from nucleus / regulation of protein localization to nucleolus / endonucleolytic cleavage of tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / trophectodermal cell differentiation / positive regulation of rRNA processing / positive regulation of respiratory burst involved in inflammatory response / nucleolus organization / translation at postsynapse / negative regulation of RNA splicing / mammalian oogenesis stage ...positive regulation of ribosomal small subunit export from nucleus / regulation of protein localization to nucleolus / endonucleolytic cleavage of tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / trophectodermal cell differentiation / positive regulation of rRNA processing / positive regulation of respiratory burst involved in inflammatory response / nucleolus organization / translation at postsynapse / negative regulation of RNA splicing / mammalian oogenesis stage / regulation of mitotic metaphase/anaphase transition / activation-induced cell death of T cells / neural crest cell differentiation / U3 snoRNA binding / translation at presynapse / positive regulation of ubiquitin-protein transferase activity / Formation of the ternary complex, and subsequently, the 43S complex / erythrocyte homeostasis / rRNA modification in the nucleus and cytosol / cytoplasmic side of rough endoplasmic reticulum membrane / laminin receptor activity / snoRNA binding / preribosome, small subunit precursor / negative regulation of ubiquitin protein ligase activity / Ribosomal scanning and start codon recognition / Translation initiation complex formation / fibroblast growth factor binding / monocyte chemotaxis / Protein hydroxylation / TOR signaling / SARS-CoV-1 modulates host translation machinery / mTORC1-mediated signalling / T cell proliferation involved in immune response / Peptide chain elongation / positive regulation of intrinsic apoptotic signaling pathway by p53 class mediator / Selenocysteine synthesis / positive regulation of signal transduction by p53 class mediator / Formation of a pool of free 40S subunits / endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / ubiquitin ligase inhibitor activity / Eukaryotic Translation Termination / Response of EIF2AK4 (GCN2) to amino acid deficiency / SRP-dependent cotranslational protein targeting to membrane / negative regulation of ubiquitin-dependent protein catabolic process / Viral mRNA Translation / negative regulation of respiratory burst involved in inflammatory response / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / GTP hydrolysis and joining of the 60S ribosomal subunit / L13a-mediated translational silencing of Ceruloplasmin expression / erythrocyte development / Major pathway of rRNA processing in the nucleolus and cytosol / regulation of translational fidelity / endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) / Protein methylation / Nuclear events stimulated by ALK signaling in cancer / ribosomal small subunit export from nucleus / rough endoplasmic reticulum / laminin binding / translation regulator activity / Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal / positive regulation of cell cycle / translation initiation factor binding / gastrulation / Maturation of protein E / Maturation of protein E / MDM2/MDM4 family protein binding / cytosolic ribosome / ER Quality Control Compartment (ERQC) / Mitotic Prometaphase / antiviral innate immune response / Myoclonic epilepsy of Lafora / EML4 and NUDC in mitotic spindle formation / FLT3 signaling by CBL mutants / Prevention of phagosomal-lysosomal fusion / IRAK2 mediated activation of TAK1 complex / Alpha-protein kinase 1 signaling pathway / Glycogen synthesis / IRAK1 recruits IKK complex / IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation / stress granule assembly / Membrane binding and targetting of GAG proteins / Endosomal Sorting Complex Required For Transport (ESCRT) / RNA endonuclease activity / visual perception / Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 / Negative regulation of FLT3 / PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 / Constitutive Signaling by NOTCH1 HD Domain Mutants / Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation / IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation / NOTCH2 Activation and Transmission of Signal to the Nucleus / TICAM1,TRAF6-dependent induction of TAK1 complex / TICAM1-dependent activation of IRF3/IRF7 / APC/C:Cdc20 mediated degradation of Cyclin B / Regulation of FZD by ubiquitination / Downregulation of ERBB4 signaling / p75NTR recruits signalling complexes / APC-Cdc20 mediated degradation of Nek2A / InlA-mediated entry of Listeria monocytogenes into host cells Similarity search - Function | |||||||||
Biological species | ![]() | |||||||||
Method | single particle reconstruction / cryo EM / Resolution: 3.3 Å | |||||||||
![]() | Cheng J / Lau B / Thoms M / Ameismeier M / Berninghausen O / Hurt E / Beckmann R | |||||||||
Funding support | 1 items
| |||||||||
![]() | ![]() Title: The nucleoplasmic phase of pre-40S formation prior to nuclear export. Authors: Jingdong Cheng / Benjamin Lau / Matthias Thoms / Michael Ameismeier / Otto Berninghausen / Ed Hurt / Roland Beckmann / ![]() ![]() Abstract: Biogenesis of the small ribosomal subunit in eukaryotes starts in the nucleolus with the formation of a 90S precursor and ends in the cytoplasm. Here, we elucidate the enigmatic structural ...Biogenesis of the small ribosomal subunit in eukaryotes starts in the nucleolus with the formation of a 90S precursor and ends in the cytoplasm. Here, we elucidate the enigmatic structural transitions of assembly intermediates from human and yeast cells during the nucleoplasmic maturation phase. After dissociation of all 90S factors, the 40S body adopts a close-to-mature conformation, whereas the 3' major domain, later forming the 40S head, remains entirely immature. A first coordination is facilitated by the assembly factors TSR1 and BUD23-TRMT112, followed by re-positioning of RRP12 that is already recruited early to the 90S for further head rearrangements. Eventually, the uS2 cluster, CK1 (Hrr25 in yeast) and the export factor SLX9 associate with the pre-40S to provide export competence. These exemplary findings reveal the evolutionary conserved mechanism of how yeast and humans assemble the 40S ribosomal subunit, but reveal also a few minor differences. | |||||||||
History |
|
-
Structure visualization
Supplemental images |
---|
-
Downloads & links
-EMDB archive
Map data | ![]() | 105.5 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 51.9 KB 51.9 KB | Display Display | ![]() |
FSC (resolution estimation) | ![]() | 12.8 KB | Display | ![]() |
Images | ![]() | 141.9 KB | ||
Filedesc metadata | ![]() | 12.7 KB | ||
Others | ![]() ![]() | 108.4 MB 108.3 MB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 7wu0MC ![]() 7wtnC ![]() 7wtoC ![]() 7wtpC ![]() 7wtqC ![]() 7wtrC ![]() 7wtsC ![]() 7wttC ![]() 7wtuC ![]() 7wtvC ![]() 7wtwC ![]() 7wtxC ![]() 7wtzC M: atomic model generated by this map C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 1.059 Å | ||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-Additional map: #2
File | emd_32807_additional_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-Additional map: #1
File | emd_32807_additional_2.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-
Sample components
+Entire : Yeast pre-40S ribosomal subunit
+Supramolecule #1: Yeast pre-40S ribosomal subunit
+Macromolecule #1: 18S rRNA
+Macromolecule #2: 40S ribosomal protein S5
+Macromolecule #3: 40S ribosomal protein S12
+Macromolecule #4: 40S ribosomal protein S15
+Macromolecule #5: 40S ribosomal protein S16
+Macromolecule #6: 40S ribosomal protein S17
+Macromolecule #7: 40S ribosomal protein S18
+Macromolecule #8: 40S ribosomal protein S19
+Macromolecule #9: 40S ribosomal protein S25
+Macromolecule #10: 40S ribosomal protein S28
+Macromolecule #11: Ubiquitin-40S ribosomal protein S27a
+Macromolecule #12: 40S ribosomal protein SA
+Macromolecule #13: 40S ribosomal protein S3a
+Macromolecule #14: 40S ribosomal protein S2
+Macromolecule #15: 40S ribosomal protein S4, X isoform
+Macromolecule #16: 40S ribosomal protein S6
+Macromolecule #17: 40S ribosomal protein S7
+Macromolecule #18: 40S ribosomal protein S8
+Macromolecule #19: 40S ribosomal protein S9
+Macromolecule #20: 40S ribosomal protein S11
+Macromolecule #21: 40S ribosomal protein S13
+Macromolecule #22: 40S ribosomal protein S14
+Macromolecule #23: 40S ribosomal protein S21
+Macromolecule #24: 40S ribosomal protein S15a
+Macromolecule #25: 40S ribosomal protein S23
+Macromolecule #26: 40S ribosomal protein S24
+Macromolecule #27: 40S ribosomal protein S27
+Macromolecule #28: 40S ribosomal protein S30
+Macromolecule #29: RNA-binding protein PNO1
+Macromolecule #30: RNA-binding protein NOB1
+Macromolecule #31: Pre-rRNA-processing protein TSR1 homolog
+Macromolecule #32: Bystin
+Macromolecule #33: Protein LTV1 homolog
+Macromolecule #34: RRP12-like protein
+Macromolecule #35: Serine/threonine-protein kinase RIO2
+Macromolecule #36: ZINC ION
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Buffer | pH: 7.4 |
---|---|
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy
Microscope | FEI TITAN KRIOS |
---|---|
Image recording | Film or detector model: GATAN K2 SUMMIT (4k x 4k) / Detector mode: COUNTING / Average electron dose: 44.0 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Nominal defocus max: 2.5 µm / Nominal defocus min: 0.8 µm |
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |