U11/U12 snRNP / U2 snRNP binding / U7 snRNA binding / histone pre-mRNA DCP binding / U7 snRNP / histone pre-mRNA 3'end processing complex / SLBP independent Processing of Histone Pre-mRNAs / SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs / B-WICH complex / protein methylation ...U11/U12 snRNP / U2 snRNP binding / U7 snRNA binding / histone pre-mRNA DCP binding / U7 snRNP / histone pre-mRNA 3'end processing complex / SLBP independent Processing of Histone Pre-mRNAs / SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs / B-WICH complex / protein methylation / U12-type spliceosomal complex / poly-ADP-D-ribose modification-dependent protein binding / 7-methylguanosine cap hypermethylation / chromatin-protein adaptor activity / protein localization to site of double-strand break / RNA splicing, via transesterification reactions / U1 snRNP binding / methylosome / blastocyst formation / pICln-Sm protein complex / snRNP binding / small nuclear ribonucleoprotein complex / splicing factor binding / SMN-Sm protein complex / P granule / spliceosomal tri-snRNP complex / U2-type precatalytic spliceosome / telomerase RNA binding / U2-type spliceosomal complex / telomerase holoenzyme complex / commitment complex / mRNA cis splicing, via spliceosome / U2-type prespliceosome assembly / U2-type catalytic step 2 spliceosome / SAGA complex / U4 snRNP / U2 snRNP / RNA Polymerase II Transcription Termination / U1 snRNP / U2-type prespliceosome / positive regulation of transcription by RNA polymerase III / precatalytic spliceosome / spliceosomal complex assembly / positive regulation of transcription by RNA polymerase I / regulation of RNA splicing / mRNA Splicing - Minor Pathway / mRNA 3'-splice site recognition / U5 snRNP / U2 snRNA binding / spliceosomal snRNP assembly / Cajal body / regulation of DNA repair / U1 snRNA binding / U4/U6 x U5 tri-snRNP complex / catalytic step 2 spliceosome / Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulation / mRNA Splicing - Major Pathway / RNA splicing / stem cell differentiation / spliceosomal complex / double-strand break repair via homologous recombination / negative regulation of protein catabolic process / mRNA splicing, via spliceosome / positive regulation of neuron projection development / B-WICH complex positively regulates rRNA expression / cytoplasmic ribonucleoprotein granule / nuclear matrix / fibrillar center / mRNA processing / site of double-strand break / snRNP Assembly / spermatogenesis / SARS-CoV-2 modulates host translation machinery / RNA helicase activity / nuclear speck / nuclear body / RNA helicase / chromatin remodeling / mRNA binding / protein-containing complex binding / positive regulation of DNA-templated transcription / nucleolus / enzyme binding / positive regulation of transcription by RNA polymerase II / ATP hydrolysis activity / DNA binding / RNA binding / extracellular exosome / zinc ion binding / nucleoplasm / ATP binding / nucleus / cytosol / cytoplasm 類似検索 - 分子機能
TatSF1-like, RNA recognition motif 1 / TatSF1-like / : / KH-domain / SF3B6, RNA recognition motif / SF3B4, RNA recognition motif 2 / Splicing factor SF3a60 binding domain / Splicing factor SF3a60 binding domain / Cactus-binding C-terminus of cactin protein / Splicing factor 3A subunit 1, ubiquitin domain ...TatSF1-like, RNA recognition motif 1 / TatSF1-like / : / KH-domain / SF3B6, RNA recognition motif / SF3B4, RNA recognition motif 2 / Splicing factor SF3a60 binding domain / Splicing factor SF3a60 binding domain / Cactus-binding C-terminus of cactin protein / Splicing factor 3A subunit 1, ubiquitin domain / : / Replication stress response SDE2 C-terminal / SF3A2 domain / : / Pre-mRNA-splicing factor SF3a complex subunit 2 (Prp11) / U2 small nuclear ribonucleoprotein B'', RNA recognition motif 2 / U2 small nuclear ribonucleoprotein B'', RNA recognition motif 1 / Splicing factor SF3a60 /Prp9 subunit, C-terminal / SF3A3 domain / SF3a60/Prp9 C-terminal / Pre-mRNA-splicing factor SF3A3, of SF3a complex, Prp9 / SF3B4, RNA recognition motif 1 / : / Splicing factor 3B, subunit 5 / Splicing factor 3A subunit 1, conserved domain / Splicing factor 3A subunit 1 / Pre-mRNA splicing factor PRP21 like protein / Splicing factor 3B subunit 1 / : / Splicing factor 3B subunit 1 / : / Domain of unknown function DUF382 / Domain of unknown function (DUF382) / SWAP/Surp / SWAP/Surp superfamily / Surp module / SURP motif repeat profile. / Suppressor-of-White-APricot splicing regulator / Zinc-finger of C2H2 type / PHF5-like / PHF5-like protein / PSP, proline-rich / PSP / proline-rich domain in spliceosome associated proteins / Splicing factor 3B subunit 5/RDS3 complex subunit 10 / Splicing factor 3B subunit 10 (SF3b10) / : / Splicing factor 3B subunit 1-like / Matrin/U1-C, C2H2-type zinc finger / Zinc finger matrin-type profile. / Small ribonucleoprotein associated, SmB/SmN / U2 small nuclear ribonucleoprotein A' / Small nuclear ribonucleoprotein D1 / U2A'/phosphoprotein 32 family A, C-terminal / occurring C-terminal to leucine-rich repeats / : / PPP2R1A-like HEAT repeat / SAP motif profile. / Leucine-rich repeat / SAP domain / Putative DNA-binding (bihelical) motif predicted to be involved in chromosomal organisation / SAP domain / Small nuclear ribonucleoprotein Sm D3 / Small nuclear ribonucleoprotein Sm D2 / Small nuclear ribonucleoprotein E / Small nuclear ribonucleoprotein G / Small nuclear ribonucleoprotein F / Matrin/U1-C-like, C2H2-type zinc finger / U1-like zinc finger / Sm-like protein Lsm7/SmG / Like-Sm (LSM) domain containing protein, LSm4/SmD1/SmD3 / Sm-like protein Lsm6/SmF / LSM domain / LSM domain, eukaryotic/archaea-type / snRNP Sm proteins / DEAD-box subfamily ATP-dependent helicases signature. / RSE1/DDB1/CPSF1 second beta-propeller / ATP-dependent RNA helicase DEAD-box, conserved site / Cleavage/polyadenylation specificity factor, A subunit, C-terminal / Cleavage/polyadenylation specificity factor, A subunit, N-terminal / : / CPSF A subunit region / RSE1/DDB1/CPSF1 first beta-propeller / RNA helicase, DEAD-box type, Q motif / : / Sm domain profile. / DEAD-box RNA helicase Q motif profile. / LSM domain superfamily / Leucine-rich repeat profile. / Zinc finger C2H2 superfamily / DEAD/DEAH box helicase domain / DEAD/DEAH box helicase / Zinc finger C2H2-type / Leucine-rich repeat / RNA recognition motif / RNA recognition motif / Eukaryotic RNA Recognition Motif (RRM) profile. / RNA recognition motif domain / RNA-binding domain superfamily / Leucine-rich repeat domain superfamily 類似検索 - ドメイン・相同性
17S U2 SnRNP complex component HTATSF1 / Splicing factor 3B subunit 1 / U2 small nuclear ribonucleoprotein B'' / U2 small nuclear ribonucleoprotein A' / Small nuclear ribonucleoprotein-associated proteins B and B' / Small nuclear ribonucleoprotein E / Small nuclear ribonucleoprotein F / Small nuclear ribonucleoprotein G / Small nuclear ribonucleoprotein Sm D1 / Small nuclear ribonucleoprotein Sm D2 ...17S U2 SnRNP complex component HTATSF1 / Splicing factor 3B subunit 1 / U2 small nuclear ribonucleoprotein B'' / U2 small nuclear ribonucleoprotein A' / Small nuclear ribonucleoprotein-associated proteins B and B' / Small nuclear ribonucleoprotein E / Small nuclear ribonucleoprotein F / Small nuclear ribonucleoprotein G / Small nuclear ribonucleoprotein Sm D1 / Small nuclear ribonucleoprotein Sm D2 / Small nuclear ribonucleoprotein Sm D3 / Splicing factor 3A subunit 3 / Splicing factor 3B subunit 2 / Splicing factor 3B subunit 3 / Splicing factor 3B subunit 4 / Splicing factor 3A subunit 2 / Splicing factor 3A subunit 1 / Probable ATP-dependent RNA helicase DDX46 / PHD finger-like domain-containing protein 5A / Splicing factor 3B subunit 5 / Splicing factor 3B subunit 6 類似検索 - 構成要素
ジャーナル: Nature / 年: 2020 タイトル: Molecular architecture of the human 17S U2 snRNP. 著者: Zhenwei Zhang / Cindy L Will / Karl Bertram / Olexandr Dybkov / Klaus Hartmuth / Dmitry E Agafonov / Romina Hofele / Henning Urlaub / Berthold Kastner / Reinhard Lührmann / Holger Stark / 要旨: The U2 small nuclear ribonucleoprotein (snRNP) has an essential role in the selection of the precursor mRNA branch-site adenosine, the nucleophile for the first step of splicing. Stable addition of ...The U2 small nuclear ribonucleoprotein (snRNP) has an essential role in the selection of the precursor mRNA branch-site adenosine, the nucleophile for the first step of splicing. Stable addition of U2 during early spliceosome formation requires the DEAD-box ATPase PRP5. Yeast U2 small nuclear RNA (snRNA) nucleotides that form base pairs with the branch site are initially sequestered in a branchpoint-interacting stem-loop (BSL), but whether the human U2 snRNA folds in a similar manner is unknown. The U2 SF3B1 protein, a common mutational target in haematopoietic cancers, contains a HEAT domain (SF3B1) with an open conformation in isolated SF3b, but a closed conformation in spliceosomes, which is required for stable interaction between U2 and the branch site. Here we report a 3D cryo-electron microscopy structure of the human 17S U2 snRNP at a core resolution of 4.1 Å and combine it with protein crosslinking data to determine the molecular architecture of this snRNP. Our structure reveals that SF3B1 interacts with PRP5 and TAT-SF1, and maintains its open conformation in U2 snRNP, and that U2 snRNA forms a BSL that is sandwiched between PRP5, TAT-SF1 and SF3B1. Thus, substantial remodelling of the BSL and displacement of BSL-interacting proteins must occur to allow formation of the U2-branch-site helix. Our studies provide a structural explanation of why TAT-SF1 must be displaced before the stable addition of U2 to the spliceosome, and identify RNP rearrangements facilitated by PRP5 that are required for stable interaction between U2 and the branch site.