[English] 日本語
Yorodumi
- EMDB-0331: Refined 13pf Hela Cell Tubulin microtubule (EML4-NTD decorated) -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-0331
TitleRefined 13pf Hela Cell Tubulin microtubule (EML4-NTD decorated)
Map dataSingle Asymmetric Unit from symmetrized reconstruction
Sample
  • Complex: Alpha and beta-tubulin from Hela Cell (modelled) decorated with EML4-NTD (not modelled)
    • Protein or peptide: Tubulin alpha-1B chain
    • Protein or peptide: Tubulin beta chain
  • Ligand: GUANOSINE-5'-TRIPHOSPHATE
  • Ligand: MAGNESIUM ION
  • Ligand: PHOSPHOMETHYLPHOSPHONIC ACID GUANYLATE ESTER
  • Ligand: TAXOL
KeywordsMicrotubule / Tubulin / Hela / EML / STRUCTURAL PROTEIN
Function / homology
Function and homology information


odontoblast differentiation / Post-chaperonin tubulin folding pathway / Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane / Cilium Assembly / Carboxyterminal post-translational modifications of tubulin / Sealing of the nuclear envelope (NE) by ESCRT-III / Intraflagellar transport / cytoskeleton-dependent intracellular transport / Formation of tubulin folding intermediates by CCT/TriC / COPI-independent Golgi-to-ER retrograde traffic ...odontoblast differentiation / Post-chaperonin tubulin folding pathway / Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane / Cilium Assembly / Carboxyterminal post-translational modifications of tubulin / Sealing of the nuclear envelope (NE) by ESCRT-III / Intraflagellar transport / cytoskeleton-dependent intracellular transport / Formation of tubulin folding intermediates by CCT/TriC / COPI-independent Golgi-to-ER retrograde traffic / Gap junction assembly / Kinesins / Assembly and cell surface presentation of NMDA receptors / GTPase activating protein binding / COPI-dependent Golgi-to-ER retrograde traffic / natural killer cell mediated cytotoxicity / intercellular bridge / regulation of synapse organization / nuclear envelope lumen / cytoplasmic microtubule / MHC class I protein binding / Recycling pathway of L1 / microtubule-based process / RHOH GTPase cycle / spindle assembly / RHO GTPases activate IQGAPs / cellular response to interleukin-4 / Hedgehog 'off' state / COPI-mediated anterograde transport / Activation of AMPK downstream of NMDARs / Mitotic Prometaphase / Loss of Nlp from mitotic centrosomes / Loss of proteins required for interphase microtubule organization from the centrosome / EML4 and NUDC in mitotic spindle formation / Recruitment of mitotic centrosome proteins and complexes / Recruitment of NuMA to mitotic centrosomes / Anchoring of the basal body to the plasma membrane / HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of ligand / MHC class II antigen presentation / Resolution of Sister Chromatid Cohesion / AURKA Activation by TPX2 / Translocation of SLC2A4 (GLUT4) to the plasma membrane / RHO GTPases Activate Formins / PKR-mediated signaling / mitotic spindle / structural constituent of cytoskeleton / microtubule cytoskeleton organization / HCMV Early Events / Aggrephagy / cytoplasmic ribonucleoprotein granule / Separation of Sister Chromatids / The role of GTSE1 in G2/M progression after G2 checkpoint / azurophil granule lumen / microtubule cytoskeleton / Regulation of PLK1 Activity at G2/M Transition / double-stranded RNA binding / mitotic cell cycle / cell body / Hydrolases; Acting on acid anhydrides; Acting on GTP to facilitate cellular and subcellular movement / microtubule / Potential therapeutics for SARS / cytoskeleton / membrane raft / protein domain specific binding / cell division / GTPase activity / ubiquitin protein ligase binding / Neutrophil degranulation / protein-containing complex binding / GTP binding / structural molecule activity / protein-containing complex / extracellular exosome / extracellular region / nucleus / metal ion binding / cytosol / cytoplasm
Similarity search - Function
Alpha tubulin / Tubulin-beta mRNA autoregulation signal. / Beta tubulin, autoregulation binding site / Beta tubulin / Tubulin / Tubulin, C-terminal / Tubulin C-terminal domain / Tubulin, conserved site / Tubulin subunits alpha, beta, and gamma signature. / Tubulin/FtsZ family, C-terminal domain ...Alpha tubulin / Tubulin-beta mRNA autoregulation signal. / Beta tubulin, autoregulation binding site / Beta tubulin / Tubulin / Tubulin, C-terminal / Tubulin C-terminal domain / Tubulin, conserved site / Tubulin subunits alpha, beta, and gamma signature. / Tubulin/FtsZ family, C-terminal domain / Tubulin/FtsZ-like, C-terminal domain / Tubulin/FtsZ, C-terminal / Tubulin/FtsZ, 2-layer sandwich domain / Tubulin/FtsZ family, GTPase domain / Tubulin/FtsZ family, GTPase domain / Tubulin/FtsZ, GTPase domain / Tubulin/FtsZ, GTPase domain superfamily
Similarity search - Domain/homology
Tubulin beta chain / Tubulin alpha-1B chain
Similarity search - Component
Biological speciesHomo sapiens (human)
Methodsingle particle reconstruction / cryo EM / Resolution: 3.6 Å
AuthorsAtherton JM / Moores CA
Funding support United Kingdom, 2 items
OrganizationGrant numberCountry
Wellcome Trust204801/Z/16/Z United Kingdom
Medical Research Council (United Kingdom)MR/R000352/1 United Kingdom
CitationJournal: Sci Signal / Year: 2019
Title: Mitotic phosphorylation by NEK6 and NEK7 reduces the microtubule affinity of EML4 to promote chromosome congression.
Authors: Rozita Adib / Jessica M Montgomery / Joseph Atherton / Laura O'Regan / Mark W Richards / Kees R Straatman / Daniel Roth / Anne Straube / Richard Bayliss / Carolyn A Moores / Andrew M Fry /
Abstract: EML4 is a microtubule-associated protein that promotes microtubule stability. We investigated its regulation across the cell cycle and found that EML4 was distributed as punctate foci along the ...EML4 is a microtubule-associated protein that promotes microtubule stability. We investigated its regulation across the cell cycle and found that EML4 was distributed as punctate foci along the microtubule lattice in interphase but exhibited reduced association with spindle microtubules in mitosis. Microtubule sedimentation and cryo-electron microscopy with 3D reconstruction revealed that the basic N-terminal domain of EML4 mediated its binding to the acidic C-terminal tails of α- and β-tubulin on the microtubule surface. The mitotic kinases NEK6 and NEK7 phosphorylated the EML4 N-terminal domain at Ser and Ser in vitro, and depletion of these kinases in cells led to increased EML4 binding to microtubules in mitosis. An S144A-S146A double mutant not only bound inappropriately to mitotic microtubules but also increased their stability and interfered with chromosome congression. In addition, constitutive activation of NEK6 or NEK7 reduced the association of EML4 with interphase microtubules. Together, these data support a model in which NEK6- and NEK7-dependent phosphorylation promotes the dissociation of EML4 from microtubules in mitosis in a manner that is required for efficient chromosome congression.
History
DepositionNov 1, 2018-
Header (metadata) releaseAug 28, 2019-
Map releaseAug 28, 2019-
UpdateMay 15, 2024-
Current statusMay 15, 2024Processing site: PDBe / Status: Released

-
Structure visualization

Movie
  • Surface view with section colored by density value
  • Surface level: 0.04
  • Imaged by UCSF Chimera
  • Download
  • Surface view colored by height
  • Surface level: 0.04
  • Imaged by UCSF Chimera
  • Download
  • Surface view with fitted model
  • Atomic models: PDB-6i2i
  • Surface level: 0.04
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerEM map:
SurfViewMolmilJmol/JSmol
Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_0331.map.gz / Format: CCP4 / Size: 307.5 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
AnnotationSingle Asymmetric Unit from symmetrized reconstruction
Projections & slices

Image control

Size
Brightness
Contrast
Others
AxesZ (Sec.)Y (Row.)X (Col.)
1.37 Å/pix.
x 100 pix.
= 137. Å
1.37 Å/pix.
x 60 pix.
= 82.2 Å
1.37 Å/pix.
x 63 pix.
= 86.31 Å

Surface

Projections

Slices (1/3)

Slices (1/2)

Slices (2/3)

Images are generated by Spider.

generated in cubic-lattice coordinate

Voxel sizeX=Y=Z: 1.37 Å
Density
Contour LevelBy AUTHOR: 0.04 / Movie #1: 0.04
Minimum - Maximum-0.09677443 - 0.1813572
Average (Standard dev.)0.0036417784 (±0.016379135)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions6063100
Spacing6360100
CellA: 86.31 Å / B: 82.2 Å / C: 137.0 Å
α=β=γ: 90.0 °

CCP4 map header:

modeImage stored as Reals
Å/pix. X/Y/Z1.371.371.37
M x/y/z6360100
origin x/y/z0.0000.0000.000
length x/y/z86.31082.200137.000
α/β/γ90.00090.00090.000
MAP C/R/S123
start NC/NR/NS000
NC/NR/NS6360100
D min/max/mean-0.0970.1810.004

-
Supplemental data

-
Additional map: 20 angstrom low pass filtered C1 reconstruction

Fileemd_0331_additional.map
Annotation20 angstrom low pass filtered C1 reconstruction
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Sample components

-
Entire : Alpha and beta-tubulin from Hela Cell (modelled) decorated with E...

EntireName: Alpha and beta-tubulin from Hela Cell (modelled) decorated with EML4-NTD (not modelled)
Components
  • Complex: Alpha and beta-tubulin from Hela Cell (modelled) decorated with EML4-NTD (not modelled)
    • Protein or peptide: Tubulin alpha-1B chain
    • Protein or peptide: Tubulin beta chain
  • Ligand: GUANOSINE-5'-TRIPHOSPHATE
  • Ligand: MAGNESIUM ION
  • Ligand: PHOSPHOMETHYLPHOSPHONIC ACID GUANYLATE ESTER
  • Ligand: TAXOL

-
Supramolecule #1: Alpha and beta-tubulin from Hela Cell (modelled) decorated with E...

SupramoleculeName: Alpha and beta-tubulin from Hela Cell (modelled) decorated with EML4-NTD (not modelled)
type: complex / ID: 1 / Parent: 0 / Macromolecule list: #1-#2
Details: EML4-NTD density at low resolution due to flexibility, thus was not modelled
Source (natural)Organism: Homo sapiens (human) / Cell: Hela
Molecular weightTheoretical: 110 kDa/nm

-
Macromolecule #1: Tubulin alpha-1B chain

MacromoleculeName: Tubulin alpha-1B chain / type: protein_or_peptide / ID: 1 / Number of copies: 1 / Enantiomer: LEVO
Source (natural)Organism: Homo sapiens (human)
Molecular weightTheoretical: 50.204445 KDa
SequenceString: MRECISIHVG QAGVQIGNAC WELYCLEHGI QPDGQMPSDK TIGGGDDSFN TFFSETGAGK HVPRAVFVDL EPTVIDEVRT GTYRQLFHP EQLITGKEDA ANNYARGHYT IGKEIIDLVL DRIRKLADQC TGLQGFLVFH SFGGGTGSGF TSLLMERLSV D YGKKSKLE ...String:
MRECISIHVG QAGVQIGNAC WELYCLEHGI QPDGQMPSDK TIGGGDDSFN TFFSETGAGK HVPRAVFVDL EPTVIDEVRT GTYRQLFHP EQLITGKEDA ANNYARGHYT IGKEIIDLVL DRIRKLADQC TGLQGFLVFH SFGGGTGSGF TSLLMERLSV D YGKKSKLE FSIYPAPQVS TAVVEPYNSI LTTHTTLEHS DCAFMVDNEA IYDICRRNLD IERPTYTNLN RLISQIVSSI TA SLRFDGA LNVDLTEFQT NLVPYPRIHF PLATYAPVIS AEKAYHEQLS VAEITNACFE PANQMVKCDP RHGKYMACCL LYR GDVVPK DVNAAIATIK TKRSIQFVDW CPTGFKVGIN YQPPTVVPGG DLAKVQRAVC MLSNTTAIAE AWARLDHKFD LMYA KRAFV HWYVGEGMEE GEFSEAREDM AALEKDYEEV GVDSVEGEGE EEGEEY

UniProtKB: Tubulin alpha-1B chain

-
Macromolecule #2: Tubulin beta chain

MacromoleculeName: Tubulin beta chain / type: protein_or_peptide / ID: 2 / Details: Beta1-tubulin / Number of copies: 1 / Enantiomer: LEVO
Source (natural)Organism: Homo sapiens (human)
Molecular weightTheoretical: 49.717629 KDa
SequenceString: MREIVHIQAG QCGNQIGAKF WEVISDEHGI DPTGTYHGDS DLQLDRISVY YNEATGGKYV PRAILVDLEP GTMDSVRSGP FGQIFRPDN FVFGQSGAGN NWAKGHYTEG AELVDSVLDV VRKEAESCDC LQGFQLTHSL GGGTGSGMGT LLISKIREEY P DRIMNTFS ...String:
MREIVHIQAG QCGNQIGAKF WEVISDEHGI DPTGTYHGDS DLQLDRISVY YNEATGGKYV PRAILVDLEP GTMDSVRSGP FGQIFRPDN FVFGQSGAGN NWAKGHYTEG AELVDSVLDV VRKEAESCDC LQGFQLTHSL GGGTGSGMGT LLISKIREEY P DRIMNTFS VVPSPKVSDT VVEPYNATLS VHQLVENTDE TYCIDNEALY DICFRTLKLT TPTYGDLNHL VSATMSGVTT CL RFPGQLN ADLRKLAVNM VPFPRLHFFM PGFAPLTSRG SQQYRALTVP ELTQQVFDAK NMMAACDPRH GRYLTVAAVF RGR MSMKEV DEQMLNVQNK NSSYFVEWIP NNVKTAVCDI PPRGLKMAVT FIGNSTAIQE LFKRISEQFT AMFRRKAFLH WYTG EGMDE MEFTEAESNM NDLVSEYQQY QDATAEEEED FGEEAEEEA

UniProtKB: Tubulin beta chain

-
Macromolecule #3: GUANOSINE-5'-TRIPHOSPHATE

MacromoleculeName: GUANOSINE-5'-TRIPHOSPHATE / type: ligand / ID: 3 / Number of copies: 1 / Formula: GTP
Molecular weightTheoretical: 523.18 Da
Chemical component information

ChemComp-GTP:
GUANOSINE-5'-TRIPHOSPHATE / GTP, energy-carrying molecule*YM

-
Macromolecule #4: MAGNESIUM ION

MacromoleculeName: MAGNESIUM ION / type: ligand / ID: 4 / Number of copies: 2 / Formula: MG
Molecular weightTheoretical: 24.305 Da

-
Macromolecule #5: PHOSPHOMETHYLPHOSPHONIC ACID GUANYLATE ESTER

MacromoleculeName: PHOSPHOMETHYLPHOSPHONIC ACID GUANYLATE ESTER / type: ligand / ID: 5 / Number of copies: 1 / Formula: G2P
Molecular weightTheoretical: 521.208 Da
Chemical component information

ChemComp-G2P:
PHOSPHOMETHYLPHOSPHONIC ACID GUANYLATE ESTER / GMP-CPP, energy-carrying molecule analogue*YM

-
Macromolecule #6: TAXOL

MacromoleculeName: TAXOL / type: ligand / ID: 6 / Number of copies: 1 / Formula: TA1
Molecular weightTheoretical: 853.906 Da
Chemical component information

ChemComp-TA1:
TAXOL / medication, chemotherapy*YM

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation statefilament

-
Sample preparation

Concentration0.5 mg/mL
BufferpH: 6.8 / Component - Name: BRB25
Details: 25mM PIPES, 1.5mM MgCl2, 1mM EGTA, 1mM DTT, 30mM NaCl,1mM GMPCPP
VitrificationCryogen name: ETHANE / Instrument: FEI VITROBOT MARK IV
DetailsMicrotubules formed from Hela cell tubulin

-
Electron microscopy

MicroscopeFEI TITAN KRIOS
Image recordingFilm or detector model: GATAN K2 SUMMIT (4k x 4k) / Detector mode: COUNTING / Average electron dose: 48.0 e/Å2 / Details: Dose-weighted sums used in reconstruction
Electron beamAcceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
Electron opticsIllumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD
Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company

-
Image processing

Startup modelType of model: INSILICO MODEL
In silico model: Insilico density map of GMPCPP microtubule made from tubulin PDBs
Final reconstructionResolution.type: BY AUTHOR / Resolution: 3.6 Å / Resolution method: FSC 0.143 CUT-OFF / Number images used: 19542
Initial angle assignmentType: MAXIMUM LIKELIHOOD
Final angle assignmentType: MAXIMUM LIKELIHOOD

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more