[English] 日本語

- EMDB-0137: Structure of a hibernating 100S ribosome reveals an inactive conf... -
+
Open data
-
Basic information
Entry | Database: EMDB / ID: EMD-0137 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1 - 70S Hibernating E. coli Ribosome | |||||||||
![]() | None | |||||||||
![]() |
| |||||||||
![]() | 100S / cryo-EM / E-site tRNA / hibernation / HPF / ribosome / RMF / S1 | |||||||||
Function / homology | ![]() dormancy process / negative regulation of translation in response to stress / negative regulation of translational elongation / : / positive regulation of cytoplasmic translation / cellular response to stress / negative regulation of cytoplasmic translational initiation / ornithine decarboxylase inhibitor activity / transcription antitermination factor activity, RNA binding / ribosomal small subunit binding ...dormancy process / negative regulation of translation in response to stress / negative regulation of translational elongation / : / positive regulation of cytoplasmic translation / cellular response to stress / negative regulation of cytoplasmic translational initiation / ornithine decarboxylase inhibitor activity / transcription antitermination factor activity, RNA binding / ribosomal small subunit binding / misfolded RNA binding / Group I intron splicing / RNA folding / transcriptional attenuation / positive regulation of ribosome biogenesis / endoribonuclease inhibitor activity / RNA-binding transcription regulator activity / negative regulation of cytoplasmic translation / four-way junction DNA binding / DnaA-L2 complex / translation repressor activity / negative regulation of translational initiation / regulation of mRNA stability / negative regulation of DNA-templated DNA replication initiation / mRNA regulatory element binding translation repressor activity / assembly of large subunit precursor of preribosome / positive regulation of RNA splicing / ribosome assembly / transcription elongation factor complex / cytosolic ribosome assembly / regulation of DNA-templated transcription elongation / DNA endonuclease activity / response to reactive oxygen species / transcription antitermination / regulation of cell growth / translational initiation / DNA-templated transcription termination / maintenance of translational fidelity / response to radiation / mRNA 5'-UTR binding / regulation of translation / ribosome biogenesis / large ribosomal subunit / ribosome binding / transferase activity / ribosomal small subunit biogenesis / ribosomal small subunit assembly / small ribosomal subunit / small ribosomal subunit rRNA binding / 5S rRNA binding / ribosomal large subunit assembly / cytosolic small ribosomal subunit / large ribosomal subunit rRNA binding / cytosolic large ribosomal subunit / cytoplasmic translation / tRNA binding / single-stranded RNA binding / negative regulation of translation / rRNA binding / ribosome / structural constituent of ribosome / translation / response to antibiotic / negative regulation of DNA-templated transcription / mRNA binding / DNA binding / RNA binding / zinc ion binding / membrane / cytosol / cytoplasm Similarity search - Function | |||||||||
Biological species | ![]() ![]() | |||||||||
Method | single particle reconstruction / cryo EM / Resolution: 3.0 Å | |||||||||
![]() | Beckert B / Turk M | |||||||||
![]() | ![]() Title: Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1. Authors: Bertrand Beckert / Martin Turk / Andreas Czech / Otto Berninghausen / Roland Beckmann / Zoya Ignatova / Jürgen M Plitzko / Daniel N Wilson / ![]() Abstract: To survive under conditions of stress, such as nutrient deprivation, bacterial 70S ribosomes dimerize to form hibernating 100S particles. In γ-proteobacteria, such as Escherichia coli, 100S ...To survive under conditions of stress, such as nutrient deprivation, bacterial 70S ribosomes dimerize to form hibernating 100S particles. In γ-proteobacteria, such as Escherichia coli, 100S formation requires the ribosome modulation factor (RMF) and the hibernation promoting factor (HPF). Here we present single-particle cryo-electron microscopy structures of hibernating 70S and 100S particles isolated from stationary-phase E. coli cells at 3.0 Å and 7.9 Å resolution, respectively. The structures reveal the binding sites for HPF and RMF as well as the unexpected presence of deacylated E-site transfer RNA and ribosomal protein bS1. HPF interacts with the anticodon-stem-loop of the E-tRNA and occludes the binding site for the messenger RNA as well as A- and P-site tRNAs. RMF facilitates stabilization of a compact conformation of bS1, which together sequester the anti-Shine-Dalgarno sequence of the 16S ribosomal RNA (rRNA), thereby inhibiting translation initiation. At the dimerization interface, the C-terminus of uS2 probes the mRNA entrance channel of the symmetry-related particle, thus suggesting that dimerization inactivates ribosomes by blocking the binding of mRNA within the channel. The back-to-back E. coli 100S arrangement is distinct from 100S particles observed previously in Gram-positive bacteria, and reveals a unique role for bS1 in translation regulation. | |||||||||
History |
|
-
Structure visualization
Movie |
![]() |
---|---|
Structure viewer | EM map: ![]() ![]() ![]() |
Supplemental images |
-
Downloads & links
-EMDB archive
Map data | ![]() | 16 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 72.6 KB 72.6 KB | Display Display | ![]() |
FSC (resolution estimation) | ![]() | 12.8 KB | Display | ![]() |
Images | ![]() | 238.3 KB | ||
Filedesc metadata | ![]() | 13.8 KB | ||
Others | ![]() ![]() | 149.1 MB 149.1 MB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Validation report
Summary document | ![]() | 500.4 KB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 499.9 KB | Display | |
Data in XML | ![]() | 12.9 KB | Display | |
Data in CIF | ![]() | 17.4 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 6h4nMC ![]() 0139C ![]() 6h58C M: atomic model generated by this map C: citing same article ( |
---|---|
Similar structure data |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | None | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 1.084 Å | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
CCP4 map header:
|
-Supplemental data
-Additional map: half map
File | emd_0137_additional_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | half map | ||||||||||||
Projections & Slices |
| ||||||||||||
Density Histograms |
-Additional map: half map
File | emd_0137_additional_2.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | half map | ||||||||||||
Projections & Slices |
| ||||||||||||
Density Histograms |
-
Sample components
+Entire : Structure of a hibernating 100S ribosome reveals an inactive conf...
+Supramolecule #1: Structure of a hibernating 100S ribosome reveals an inactive conf...
+Macromolecule #1: 16S ribosomal RNA
+Macromolecule #22: 23S ribosomal RNA
+Macromolecule #23: 5S ribosomal RNA
+Macromolecule #53: tRNA
+Macromolecule #57: RNA (5'-R(P*CP*UP*CP*CP*U)-3')
+Macromolecule #2: 30S ribosomal protein S2
+Macromolecule #3: 30S ribosomal protein S3
+Macromolecule #4: 30S ribosomal protein S4
+Macromolecule #5: 30S ribosomal protein S5
+Macromolecule #6: 30S ribosomal protein S6
+Macromolecule #7: 30S ribosomal protein S7
+Macromolecule #8: 30S ribosomal protein S8
+Macromolecule #9: 30S ribosomal protein S9
+Macromolecule #10: 30S ribosomal protein S10
+Macromolecule #11: 30S ribosomal protein S11
+Macromolecule #12: 30S ribosomal protein S12
+Macromolecule #13: 30S ribosomal protein S13
+Macromolecule #14: 30S ribosomal protein S14
+Macromolecule #15: 30S ribosomal protein S15
+Macromolecule #16: 30S ribosomal protein S16
+Macromolecule #17: 30S ribosomal protein S17
+Macromolecule #18: 30S ribosomal protein S18
+Macromolecule #19: 30S ribosomal protein S19
+Macromolecule #20: 30S ribosomal protein S20
+Macromolecule #21: 30S ribosomal protein S21
+Macromolecule #24: 50S ribosomal protein L2
+Macromolecule #25: 50S ribosomal protein L3
+Macromolecule #26: 50S ribosomal protein L4
+Macromolecule #27: 50S ribosomal protein L5
+Macromolecule #28: 50S ribosomal protein L6
+Macromolecule #29: 50S ribosomal protein L9
+Macromolecule #30: 50S ribosomal protein L13
+Macromolecule #31: 50S ribosomal protein L14
+Macromolecule #32: 50S ribosomal protein L15
+Macromolecule #33: 50S ribosomal protein L16
+Macromolecule #34: 50S ribosomal protein L17
+Macromolecule #35: 50S ribosomal protein L18
+Macromolecule #36: 50S ribosomal protein L19
+Macromolecule #37: 50S ribosomal protein L20
+Macromolecule #38: 50S ribosomal protein L21
+Macromolecule #39: 50S ribosomal protein L22
+Macromolecule #40: 50S ribosomal protein L23
+Macromolecule #41: 50S ribosomal protein L24
+Macromolecule #42: 50S ribosomal protein L25
+Macromolecule #43: 50S ribosomal protein L27
+Macromolecule #44: 50S ribosomal protein L28
+Macromolecule #45: 50S ribosomal protein L29
+Macromolecule #46: 50S ribosomal protein L30
+Macromolecule #47: 50S ribosomal protein L32
+Macromolecule #48: 50S ribosomal protein L33
+Macromolecule #49: 50S ribosomal protein L34
+Macromolecule #50: 50S ribosomal protein L35
+Macromolecule #51: 50S ribosomal protein L36
+Macromolecule #52: 50S ribosomal protein L31
+Macromolecule #54: Ribosome modulation factor
+Macromolecule #55: 30S ribosomal protein S1
+Macromolecule #56: Ribosome hibernation promoting factor
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Buffer | pH: 7.5 Details: B100S buffer (25 mM Hepes pH 7.5, 100 mM KOAc, 15 mM Mg(OAc)2, 1 mM dithiothreitol) |
---|---|
Grid | Model: Quantifoil, UltrAuFoil, R1.2/1.3 / Material: GOLD |
Vitrification | Cryogen name: ETHANE-PROPANE / Instrument: FEI VITROBOT MARK III |
-
Electron microscopy
Microscope | FEI TITAN KRIOS |
---|---|
Image recording | Film or detector model: FEI FALCON II (4k x 4k) / Average electron dose: 2.5 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | Illumination mode: SPOT SCAN / Imaging mode: BRIGHT FIELD |
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
+
Image processing
-Atomic model buiding 1
Refinement | Protocol: RIGID BODY FIT |
---|---|
Output model | ![]() PDB-6h4n: |