[English] 日本語

- PDB-8vrt: The structure of LSD1-CoREST-HDAC1 in complex with KBTBD4R313PRR ... -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 8vrt | ||||||
---|---|---|---|---|---|---|---|
Title | The structure of LSD1-CoREST-HDAC1 in complex with KBTBD4R313PRR mutant | ||||||
![]() |
| ||||||
![]() | LIGASE / protein degradation / E3 ligase / Neo-substrate / cancer mutation | ||||||
Function / homology | ![]() Loss of MECP2 binding ability to 5mC-DNA / Krueppel-associated box domain binding / Repression of WNT target genes / MECP2 regulates transcription of neuronal ligands / protein lysine delactylase activity / histone H4K16 deacetylase activity, hydrolytic mechanism / histone H4K5 deacetylase activity, hydrolytic mechanism / histone H4K8 deacetylase activity, hydrolytic mechanism / histone H3K4 deacetylase activity, hydrolytic mechanism / histone H3K14 deacetylase activity, hydrolytic mechanism ...Loss of MECP2 binding ability to 5mC-DNA / Krueppel-associated box domain binding / Repression of WNT target genes / MECP2 regulates transcription of neuronal ligands / protein lysine delactylase activity / histone H4K16 deacetylase activity, hydrolytic mechanism / histone H4K5 deacetylase activity, hydrolytic mechanism / histone H4K8 deacetylase activity, hydrolytic mechanism / histone H3K4 deacetylase activity, hydrolytic mechanism / histone H3K14 deacetylase activity, hydrolytic mechanism / p75NTR negatively regulates cell cycle via SC1 / histone H4K12 deacetylase activity, hydrolytic mechanism / epidermal cell differentiation / positive regulation of megakaryocyte differentiation / histone decrotonylase activity / fungiform papilla formation / histone H3K9 deacetylase activity, hydrolytic mechanism / negative regulation of androgen receptor signaling pathway / NuRD complex / regulation of cell fate specification / negative regulation of stem cell population maintenance / endoderm development / Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL2) in complex with HDAC1 / protein deacetylation / histone deacetylase / regulation of stem cell differentiation / Regulation of MITF-M-dependent genes involved in apoptosis / STAT3 nuclear events downstream of ALK signaling / Transcription of E2F targets under negative control by DREAM complex / DNA repair complex / protein lysine deacetylase activity / Hydrolases; Acting on carbon-nitrogen bonds, other than peptide bonds; In linear amides / embryonic digit morphogenesis / histone deacetylase activity / positive regulation of intracellular estrogen receptor signaling pathway / DNA methylation-dependent constitutive heterochromatin formation / Notch-HLH transcription pathway / negative regulation of gene expression, epigenetic / Sin3-type complex / E-box binding / G1/S-Specific Transcription / positive regulation of stem cell population maintenance / negative regulation of intrinsic apoptotic signaling pathway / histone methyltransferase complex / eyelid development in camera-type eye / odontogenesis of dentin-containing tooth / oligodendrocyte differentiation / RNA Polymerase I Transcription Initiation / positive regulation of oligodendrocyte differentiation / histone deacetylase complex / G0 and Early G1 / Regulation of MECP2 expression and activity / host-mediated suppression of viral transcription / hair follicle placode formation / NF-kappaB binding / FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes / Regulation of MITF-M-dependent genes involved in cell cycle and proliferation / Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 / RNA polymerase II core promoter sequence-specific DNA binding / heterochromatin / core promoter sequence-specific DNA binding / MECP2 regulates neuronal receptors and channels / Nuclear events stimulated by ALK signaling in cancer / cellular response to platelet-derived growth factor stimulus / Regulation of TP53 Activity through Acetylation / negative regulation of canonical NF-kappaB signal transduction / transcription repressor complex / Transcriptional and post-translational regulation of MITF-M expression and activity / SUMOylation of chromatin organization proteins / negative regulation of cell migration / ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression / Regulation of PTEN gene transcription / erythrocyte differentiation / transcription corepressor binding / Regulation of endogenous retroelements by KRAB-ZFP proteins / hippocampus development / Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) / HDACs deacetylate histones / Deactivation of the beta-catenin transactivating complex / positive regulation of smooth muscle cell proliferation / Downregulation of SMAD2/3:SMAD4 transcriptional activity / negative regulation of transforming growth factor beta receptor signaling pathway / promoter-specific chromatin binding / circadian regulation of gene expression / SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription / negative regulation of canonical Wnt signaling pathway / Formation of the beta-catenin:TCF transactivating complex / RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function / NoRC negatively regulates rRNA expression / NOTCH1 Intracellular Domain Regulates Transcription / Constitutive Signaling by NOTCH1 PEST Domain Mutants / Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants / histone deacetylase binding / neuron differentiation / transcription corepressor activity / p53 binding / heterochromatin formation / chromatin organization / Factors involved in megakaryocyte development and platelet production / transcription regulator complex Similarity search - Function | ||||||
Biological species | ![]() | ||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.42 Å | ||||||
![]() | Xie, X. / Liau, B. / Zheng, N. | ||||||
Funding support | ![]()
| ||||||
![]() | ![]() Title: Converging mechanism of UM171 and KBTBD4 neomorphic cancer mutations. Authors: Xiaowen Xie / Olivia Zhang / Megan J R Yeo / Ceejay Lee / Ran Tao / Stefan A Harry / N Connor Payne / Eunju Nam / Leena Paul / Yiran Li / Hui Si Kwok / Hanjie Jiang / Haibin Mao / Jennifer L ...Authors: Xiaowen Xie / Olivia Zhang / Megan J R Yeo / Ceejay Lee / Ran Tao / Stefan A Harry / N Connor Payne / Eunju Nam / Leena Paul / Yiran Li / Hui Si Kwok / Hanjie Jiang / Haibin Mao / Jennifer L Hadley / Hong Lin / Melissa Batts / Pallavi M Gosavi / Vincenzo D'Angiolella / Philip A Cole / Ralph Mazitschek / Paul A Northcott / Ning Zheng / Brian B Liau / ![]() ![]() Abstract: Cancer mutations can create neomorphic protein-protein interactions to drive aberrant function. As a substrate receptor of the CULLIN3-RING E3 ubiquitin ligase complex, KBTBD4 is recurrently mutated ...Cancer mutations can create neomorphic protein-protein interactions to drive aberrant function. As a substrate receptor of the CULLIN3-RING E3 ubiquitin ligase complex, KBTBD4 is recurrently mutated in medulloblastoma, the most common embryonal brain tumour in children. These mutations impart gain-of-function to KBTBD4 to induce aberrant degradation of the transcriptional corepressor CoREST. However, their mechanism remains unresolved. Here we establish that KBTBD4 mutations promote CoREST degradation through engaging HDAC1/2 as the direct target of the mutant substrate receptor. Using deep mutational scanning, we chart the mutational landscape of the KBTBD4 cancer hotspot, revealing distinct preferences by which insertions and substitutions can promote gain-of-function and the critical residues involved in the hotspot interaction. Cryo-electron microscopy analysis of two distinct KBTBD4 cancer mutants bound to LSD1-HDAC1-CoREST reveals that a KBTBD4 homodimer asymmetrically engages HDAC1 with two KELCH-repeat β-propeller domains. The interface between HDAC1 and one of the KBTBD4 β-propellers is stabilized by the medulloblastoma mutations, which insert a bulky side chain into the HDAC1 active site pocket. Our structural and mutational analyses inform how this hotspot E3-neosubstrate interface can be chemically modulated. First, we unveil a converging shape-complementarity-based mechanism between gain-of-function E3 mutations and a molecular glue degrader, UM171. Second, we demonstrate that HDAC1/2 inhibitors can block the mutant KBTBD4-HDAC1 interface and proliferation of KBTBD4-mutant medulloblastoma cells. Altogether, our work reveals the structural and mechanistic basis of cancer mutation-driven neomorphic protein-protein interactions. | ||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 318.4 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 250.4 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Summary document | ![]() | 1.4 MB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 1.4 MB | Display | |
Data in XML | ![]() | 60.7 KB | Display | |
Data in CIF | ![]() | 89.5 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 43487MC ![]() 8vpqC ![]() 9dtqC M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
#1: Protein | Mass: 58463.059 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() #2: Protein | | Mass: 55178.906 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() References: UniProt: Q13547, histone deacetylase, Hydrolases; Acting on carbon-nitrogen bonds, other than peptide bonds; In linear amides #3: Protein | | Mass: 45974.441 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() #4: Chemical | ChemComp-ZN / | #5: Chemical | ChemComp-IHP / | Has ligand of interest | Y | Has protein modification | N | |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component | Name: LHC-KBTBD4PRRmutant / Type: COMPLEX / Entity ID: #1-#3 / Source: RECOMBINANT |
---|---|
Source (natural) | Organism: ![]() |
Source (recombinant) | Organism: ![]() |
Buffer solution | pH: 7.5 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy imaging
Microscopy | Model: TFS GLACIOS |
---|---|
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 1800 nm / Nominal defocus min: 800 nm |
Image recording | Electron dose: 49 e/Å2 / Film or detector model: GATAN K3 (6k x 4k) |
-
Processing
EM software | Name: PHENIX / Version: 1.21.1_5286: / Category: model refinement | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF correction | Type: PHASE FLIPPING ONLY | ||||||||||||||||||||||||
3D reconstruction | Resolution: 3.42 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 110048 / Symmetry type: POINT | ||||||||||||||||||||||||
Refine LS restraints |
|