[English] 日本語
Yorodumi- PDB-7zuw: Structure of RQT (C1) bound to the stalled ribosome in a disome u... -
+Open data
-Basic information
Entry | Database: PDB / ID: 7zuw | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | Structure of RQT (C1) bound to the stalled ribosome in a disome unit from S. cerevisiae | ||||||||||||
Components |
| ||||||||||||
Keywords | RIBOSOME / collision / splitting / RQC / RQT | ||||||||||||
Function / homology | Function and homology information RQC-trigger complex / ribosome disassembly / ribosomal subunit / negative regulation of glucose mediated signaling pathway / negative regulation of translational frameshifting / Negative regulators of DDX58/IFIH1 signaling / mTORC1-mediated signalling / Protein hydroxylation / ribosome-associated ubiquitin-dependent protein catabolic process / GDP-dissociation inhibitor activity ...RQC-trigger complex / ribosome disassembly / ribosomal subunit / negative regulation of glucose mediated signaling pathway / negative regulation of translational frameshifting / Negative regulators of DDX58/IFIH1 signaling / mTORC1-mediated signalling / Protein hydroxylation / ribosome-associated ubiquitin-dependent protein catabolic process / GDP-dissociation inhibitor activity / nonfunctional rRNA decay / hexon binding / pre-mRNA 5'-splice site binding / Formation of the ternary complex, and subsequently, the 43S complex / Translation initiation complex formation / cleavage in ITS2 between 5.8S rRNA and LSU-rRNA of tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / Ribosomal scanning and start codon recognition / response to cycloheximide / K63-linked polyubiquitin modification-dependent protein binding / Major pathway of rRNA processing in the nucleolus and cytosol / mRNA destabilization / SRP-dependent cotranslational protein targeting to membrane / GTP hydrolysis and joining of the 60S ribosomal subunit / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) / Formation of a pool of free 40S subunits / negative regulation of mRNA splicing, via spliceosome / preribosome, large subunit precursor / regulation of amino acid metabolic process / L13a-mediated translational silencing of Ceruloplasmin expression / ribosomal large subunit export from nucleus / 90S preribosome / G-protein alpha-subunit binding / positive regulation of protein kinase activity / endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / regulation of translational fidelity / Ub-specific processing proteases / protein-RNA complex assembly / ribosomal subunit export from nucleus / translation regulator activity / endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / maturation of LSU-rRNA / cytosolic ribosome / cellular response to amino acid starvation / maturation of LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / rescue of stalled ribosome / ribosomal large subunit biogenesis / maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / maturation of SSU-rRNA / ubiquitin binding / small-subunit processome / translational initiation / helicase activity / macroautophagy / protein kinase C binding / positive regulation of apoptotic signaling pathway / maintenance of translational fidelity / modification-dependent protein catabolic process / cytoplasmic stress granule / protein tag activity / rRNA processing / ribosomal small subunit biogenesis / small ribosomal subunit rRNA binding / ribosome biogenesis / viral capsid / ribosome binding / regulation of translation / ribosomal small subunit assembly / small ribosomal subunit / 5S rRNA binding / large ribosomal subunit rRNA binding / cytosolic small ribosomal subunit / ribosomal large subunit assembly / cytoplasmic translation / defense response to virus / cytosolic large ribosomal subunit / RNA helicase activity / negative regulation of translation / rRNA binding / RNA helicase / ribosome / protein ubiquitination / structural constituent of ribosome / positive regulation of protein phosphorylation / G protein-coupled receptor signaling pathway / ribonucleoprotein complex / translation / negative regulation of gene expression / response to antibiotic / mRNA binding / ubiquitin protein ligase binding / host cell nucleus / nucleolus / positive regulation of DNA-templated transcription / ATP hydrolysis activity / mitochondrion / RNA binding / zinc ion binding / nucleoplasm / ATP binding Similarity search - Function | ||||||||||||
Biological species | Saccharomyces cerevisiae (brewer's yeast) | ||||||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 4.3 Å | ||||||||||||
Authors | Best, K.M. / Ikeuchi, K. / Kater, L. / Best, D.M. / Musial, J. / Matsuo, Y. / Berninghausen, O. / Becker, T. / Inada, T. / Beckmann, R. | ||||||||||||
Funding support | European Union, Germany, 3items
| ||||||||||||
Citation | Journal: Nat Commun / Year: 2023 Title: Structural basis for clearing of ribosome collisions by the RQT complex. Authors: Katharina Best / Ken Ikeuchi / Lukas Kater / Daniel Best / Joanna Musial / Yoshitaka Matsuo / Otto Berninghausen / Thomas Becker / Toshifumi Inada / Roland Beckmann / Abstract: Translation of aberrant messenger RNAs can cause stalling of ribosomes resulting in ribosomal collisions. Collided ribosomes are specifically recognized to initiate stress responses and quality ...Translation of aberrant messenger RNAs can cause stalling of ribosomes resulting in ribosomal collisions. Collided ribosomes are specifically recognized to initiate stress responses and quality control pathways. Ribosome-associated quality control facilitates the degradation of incomplete translation products and requires dissociation of the stalled ribosomes. A central event is therefore the splitting of collided ribosomes by the ribosome quality control trigger complex, RQT, by an unknown mechanism. Here we show that RQT requires accessible mRNA and the presence of a neighboring ribosome. Cryogenic electron microscopy of RQT-ribosome complexes reveals that RQT engages the 40S subunit of the lead ribosome and can switch between two conformations. We propose that the Ski2-like helicase 1 (Slh1) subunit of RQT applies a pulling force on the mRNA, causing destabilizing conformational changes of the small ribosomal subunit, ultimately resulting in subunit dissociation. Our findings provide conceptual framework for a helicase-driven ribosomal splitting mechanism. #1: Journal: Acta Crystallogr D Struct Biol / Year: 2018 Title: Real-space refinement in PHENIX for cryo-EM and crystallography. Authors: Afonine, P.V. / Poon, B.K. / Read, R.J. / Sobolev, O.V. / Terwilliger, T.C. / Urzhumtsev, A. / Adams, P.D. | ||||||||||||
History |
|
-Structure visualization
Structure viewer | Molecule: MolmilJmol/JSmol |
---|
-Downloads & links
-Download
PDBx/mmCIF format | 7zuw.cif.gz | 4.8 MB | Display | PDBx/mmCIF format |
---|---|---|---|---|
PDB format | pdb7zuw.ent.gz | Display | PDB format | |
PDBx/mmJSON format | 7zuw.json.gz | Tree view | PDBx/mmJSON format | |
Others | Other downloads |
-Validation report
Summary document | 7zuw_validation.pdf.gz | 1.9 MB | Display | wwPDB validaton report |
---|---|---|---|---|
Full document | 7zuw_full_validation.pdf.gz | 1.9 MB | Display | |
Data in XML | 7zuw_validation.xml.gz | 365.9 KB | Display | |
Data in CIF | 7zuw_validation.cif.gz | 647.6 KB | Display | |
Arichive directory | https://data.pdbj.org/pub/pdb/validation_reports/zu/7zuw ftp://data.pdbj.org/pub/pdb/validation_reports/zu/7zuw | HTTPS FTP |
-Related structure data
Related structure data | 14978MC 7zpqC 7zrsC 7zs5C 7zuxC C: citing same article (ref.) M: map data used to model this data |
---|---|
Similar structure data | Similarity search - Function & homologyF&H Search |
-Links
-Assembly
Deposited unit |
|
---|---|
1 |
|
-Components
-RNA chain , 5 types, 5 molecules 23456
#1: RNA chain | Mass: 579761.938 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) |
---|---|
#2: RNA chain | Mass: 50682.922 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) |
#3: RNA chain | Mass: 38951.105 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) |
#4: RNA chain | Mass: 1097493.875 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) |
#5: RNA chain | Mass: 24445.512 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) |
+40S ribosomal protein ... , 23 types, 23 molecules AAABAEAGAHAIAJAKALAMANAOAQARASATAVAXAYAZAaAbAe
-Protein , 20 types, 20 molecules ACADAFAPAUAWAcAdAfAgBCBDBHBIBJBMBVBdBjCB
#8: Protein | Mass: 23084.850 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A6A5PWF7 |
---|---|
#9: Protein | Mass: 24631.713 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A6A5Q3Q1 |
#11: Protein | Mass: 22908.338 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A1L4AA68 |
#21: Protein | Mass: 13265.591 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A6A5Q6F2 |
#26: Protein | Mass: 11363.321 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A6A5PVE9 |
#28: Protein | Mass: 14518.867 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A6A5PSE9 |
#34: Protein | Mass: 7116.281 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A6A5Q700 |
#35: Protein | Mass: 6335.303 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A6A5PV92 |
#37: Protein | Mass: 8388.049 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A6A5PU37 |
#38: Protein | Mass: 34151.484 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / Strain: ATCC 204508 / S288c / References: UniProt: P38011 |
#41: Protein | Mass: 39027.926 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A6A5Q3W0 |
#42: Protein | Mass: 33415.387 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A6A5Q0W8 |
#46: Protein | Mass: 21605.061 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A8H4FCT7 |
#47: Protein | Mass: 25080.062 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A6A5PUZ5 |
#48: Protein | Mass: 19266.082 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A6A5PYM2 |
#51: Protein | Mass: 24351.162 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A8H4BX09 |
#60: Protein | Mass: 14617.215 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A6A5PY83 |
#68: Protein | Mass: 14478.054 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A6A5Q1M9 |
#74: Protein | Mass: 8714.363 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A6A5PUL8 |
#81: Protein | Mass: 34241.949 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Saccharomyces cerevisiae (brewer's yeast) Gene: CUE3, GI527_G0002308 / Production host: Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: A0A8H4C075 |
+60S ribosomal protein ... , 32 types, 32 molecules BABBBEBFBGBKBLBNBOBPBQBRBSBTBUBWBXBYBZBaBbBcBeBfBgBhBiBkBlBmBnBo
-RQC trigger complex ... , 2 types, 2 molecules CACC
#80: Protein | Mass: 225127.078 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Saccharomyces cerevisiae (brewer's yeast) Gene: SLH1, RQT2, YGR271W, G9365 / Production host: Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: P53327, RNA helicase |
---|---|
#82: Protein | Mass: 60903.078 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Saccharomyces cerevisiae (brewer's yeast) Gene: RQT4, YKR023W / Production host: Saccharomyces cerevisiae (brewer's yeast) / References: UniProt: P36119 |
-Non-polymers , 2 types, 95 molecules
#83: Chemical | ChemComp-MG / #84: Chemical | ChemComp-ZN / |
---|
-Details
Has ligand of interest | N |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-Sample preparation
Component |
| ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source (natural) |
| ||||||||||||||||||||||||
Source (recombinant) |
| ||||||||||||||||||||||||
Buffer solution | pH: 7.5 | ||||||||||||||||||||||||
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES | ||||||||||||||||||||||||
Specimen support | Grid material: COPPER / Grid type: Quantifoil R3/3 | ||||||||||||||||||||||||
Vitrification | Cryogen name: ETHANE |
-Electron microscopy imaging
Experimental equipment | Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: OTHER |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 3000 nm / Nominal defocus min: 500 nm |
Image recording | Electron dose: 44 e/Å2 / Film or detector model: GATAN K2 SUMMIT (4k x 4k) |
-Processing
Software |
| ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||
3D reconstruction | Resolution: 4.3 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 17885 / Symmetry type: POINT | ||||||||||||||||
Refinement | Cross valid method: NONE |