[English] 日本語
Yorodumi
- PDB-7ru4: CC6.33 IgG in complex with SARS-CoV-2-6P-Mut7 S protein (RBD/Fv l... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7ru4
TitleCC6.33 IgG in complex with SARS-CoV-2-6P-Mut7 S protein (RBD/Fv local refinement)
Components
  • CC6.33 IgG heavy chain Fv
  • CC6.33 IgG kappa chain Fv
  • Spike glycoprotein
KeywordsVIRAL PROTEIN/Immune System / COVID / SARS-CoV-2 / stabilizing mutations / neutralizing antibody / RBD / VIRAL PROTEIN / VIRAL PROTEIN-Immune System complex
Function / homology
Function and homology information


Maturation of spike protein / viral translation / Translation of Structural Proteins / Virion Assembly and Release / host cell surface / host extracellular space / suppression by virus of host tetherin activity / Induction of Cell-Cell Fusion / structural constituent of virion / entry receptor-mediated virion attachment to host cell ...Maturation of spike protein / viral translation / Translation of Structural Proteins / Virion Assembly and Release / host cell surface / host extracellular space / suppression by virus of host tetherin activity / Induction of Cell-Cell Fusion / structural constituent of virion / entry receptor-mediated virion attachment to host cell / host cell endoplasmic reticulum-Golgi intermediate compartment membrane / receptor-mediated endocytosis of virus by host cell / membrane fusion / Attachment and Entry / positive regulation of viral entry into host cell / receptor-mediated virion attachment to host cell / receptor ligand activity / host cell surface receptor binding / fusion of virus membrane with host plasma membrane / fusion of virus membrane with host endosome membrane / viral envelope / virion attachment to host cell / SARS-CoV-2 activates/modulates innate and adaptive immune responses / host cell plasma membrane / virion membrane / identical protein binding / membrane / plasma membrane
Similarity search - Function
Spike (S) protein S1 subunit, receptor-binding domain, SARS-CoV-2 / Spike (S) protein S1 subunit, N-terminal domain, SARS-CoV-like / Betacoronavirus spike (S) glycoprotein S1 subunit N-terminal (NTD) domain profile. / Spike glycoprotein, N-terminal domain superfamily / Betacoronavirus spike (S) glycoprotein S1 subunit C-terminal (CTD) domain profile. / Spike glycoprotein, betacoronavirus / Spike (S) protein S1 subunit, receptor-binding domain, betacoronavirus / Spike S1 subunit, receptor binding domain superfamily, betacoronavirus / Betacoronavirus spike glycoprotein S1, receptor binding / Spike glycoprotein S1, N-terminal domain, betacoronavirus-like ...Spike (S) protein S1 subunit, receptor-binding domain, SARS-CoV-2 / Spike (S) protein S1 subunit, N-terminal domain, SARS-CoV-like / Betacoronavirus spike (S) glycoprotein S1 subunit N-terminal (NTD) domain profile. / Spike glycoprotein, N-terminal domain superfamily / Betacoronavirus spike (S) glycoprotein S1 subunit C-terminal (CTD) domain profile. / Spike glycoprotein, betacoronavirus / Spike (S) protein S1 subunit, receptor-binding domain, betacoronavirus / Spike S1 subunit, receptor binding domain superfamily, betacoronavirus / Betacoronavirus spike glycoprotein S1, receptor binding / Spike glycoprotein S1, N-terminal domain, betacoronavirus-like / Betacoronavirus-like spike glycoprotein S1, N-terminal / Spike glycoprotein S2, coronavirus, heptad repeat 1 / Spike glycoprotein S2, coronavirus, heptad repeat 2 / Coronavirus spike (S) glycoprotein S2 subunit heptad repeat 2 (HR2) region profile. / Coronavirus spike (S) glycoprotein S2 subunit heptad repeat 1 (HR1) region profile. / Spike glycoprotein S2 superfamily, coronavirus / Spike glycoprotein S2, coronavirus / Coronavirus spike glycoprotein S2 / Coronavirus spike glycoprotein S1, C-terminal / Coronavirus spike glycoprotein S1, C-terminal
Similarity search - Domain/homology
Biological speciesHomo sapiens (human)
Severe acute respiratory syndrome coronavirus 2
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.3 Å
AuthorsOzorowski, G. / Turner, H.L. / Ward, A.B.
Funding support United States, 2items
OrganizationGrant numberCountry
Bill & Melinda Gates FoundationOPP1170236 United States
Bill & Melinda Gates FoundationINV-004923 United States
CitationJournal: iScience / Year: 2022
Title: Engineering SARS-CoV-2 neutralizing antibodies for increased potency and reduced viral escape pathways.
Authors: Fangzhu Zhao / Celina Keating / Gabriel Ozorowski / Namir Shaabani / Irene M Francino-Urdaniz / Shawn Barman / Oliver Limbo / Alison Burns / Panpan Zhou / Michael J Ricciardi / Jordan Woehl ...Authors: Fangzhu Zhao / Celina Keating / Gabriel Ozorowski / Namir Shaabani / Irene M Francino-Urdaniz / Shawn Barman / Oliver Limbo / Alison Burns / Panpan Zhou / Michael J Ricciardi / Jordan Woehl / Quoc Tran / Hannah L Turner / Linghang Peng / Deli Huang / David Nemazee / Raiees Andrabi / Devin Sok / John R Teijaro / Timothy A Whitehead / Andrew B Ward / Dennis R Burton / Joseph G Jardine /
Abstract: The rapid spread of SARS-CoV-2 variants poses a constant threat of escape from monoclonal antibody and vaccine countermeasures. Mutations in the ACE2 receptor binding site on the surface S protein ...The rapid spread of SARS-CoV-2 variants poses a constant threat of escape from monoclonal antibody and vaccine countermeasures. Mutations in the ACE2 receptor binding site on the surface S protein have been shown to disrupt antibody binding and prevent viral neutralization. Here, we used a directed evolution-based approach to engineer three neutralizing antibodies for enhanced binding to S protein. The engineered antibodies showed increased functional activity in terms of neutralization potency and/or breadth of neutralization against viral variants. Deep mutational scanning revealed that higher binding affinity reduces the total number of viral escape mutations. Studies in the Syrian hamster model showed two examples where the affinity-matured antibody provided superior protection compared to the parental antibody. These data suggest that monoclonal antibodies for antiviral indications would benefit from affinity maturation to reduce viral escape pathways and appropriate affinity maturation in vaccine immunization could help resist viral variation.
History
DepositionAug 16, 2021Deposition site: RCSB / Processing site: RCSB
Revision 1.0Aug 24, 2022Provider: repository / Type: Initial release
Revision 1.1Sep 14, 2022Group: Database references / Category: citation / Item: _citation.journal_volume / _citation.title

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
H: CC6.33 IgG heavy chain Fv
L: CC6.33 IgG kappa chain Fv
A: Spike glycoprotein
hetero molecules


Theoretical massNumber of molelcules
Total (without water)166,5845
Polymers165,7933
Non-polymers7922
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Antibody CC6.33 IgG heavy chain Fv


Mass: 12737.371 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Cell line (production host): HEK293F / Production host: Homo sapiens (human)
#2: Antibody CC6.33 IgG kappa chain Fv


Mass: 11727.018 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Cell line (production host): HEK293F / Production host: Homo sapiens (human)
#3: Protein Spike glycoprotein / S glycoprotein / E2 / Peplomer protein


Mass: 141328.359 Da / Num. of mol.: 1
Mutation: R682G, R683S, R685S, V705C, F817P, T883C, A892P, A899P, A942P, K986P, V987P
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Severe acute respiratory syndrome coronavirus 2
Gene: S, 2 / Cell line (production host): HEK293F / Production host: Homo sapiens (human) / References: UniProt: P0DTC2
#4: Polysaccharide 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta- ...2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 570.542 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DGlcpNAcb1-4[LFucpa1-6]DGlcpNAcb1-Glycam Condensed SequenceGMML 1.0
WURCS=2.0/2,3,2/[a2122h-1b_1-5_2*NCC/3=O][a1221m-1a_1-5]/1-1-2/a4-b1_a6-c1WURCSPDB2Glycan 1.1.0
[]{[(4+1)][b-D-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{}[(6+1)][a-L-Fucp]{}}}LINUCSPDB-CARE
#5: Sugar ChemComp-NAG / 2-acetamido-2-deoxy-beta-D-glucopyranose / N-acetyl-beta-D-glucosamine / 2-acetamido-2-deoxy-beta-D-glucose / 2-acetamido-2-deoxy-D-glucose / 2-acetamido-2-deoxy-glucose / N-ACETYL-D-GLUCOSAMINE


Type: D-saccharide, beta linking / Mass: 221.208 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: C8H15NO6
IdentifierTypeProgram
DGlcpNAcbCONDENSED IUPAC CARBOHYDRATE SYMBOLGMML 1.0
N-acetyl-b-D-glucopyranosamineCOMMON NAMEGMML 1.0
b-D-GlcpNAcIUPAC CARBOHYDRATE SYMBOLPDB-CARE 1.0
GlcNAcSNFG CARBOHYDRATE SYMBOLGMML 1.0
Has ligand of interestN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

Component
IDNameTypeDetailsEntity IDParent-IDSource
1CC6.33 IgG in complex with SARS-2-CoV-6P-Mut7 S proteinCOMPLEXIncubated IgG at 1:2 ratio with Spike trimer for about 15 minutes at room temperature#1-#30MULTIPLE SOURCES
2CC6.33 IgGCOMPLEX#1-#21RECOMBINANT
3Spike glycoproteinCOMPLEX#31RECOMBINANT
Molecular weightExperimental value: NO
Source (natural)
IDEntity assembly-IDOrganismNcbi tax-ID
12Homo sapiens (human)9606
23Severe acute respiratory syndrome coronavirus 22697049
Source (recombinant)
IDEntity assembly-IDOrganismNcbi tax-ID
12Homo sapiens (human)9606
23Homo sapiens (human)9606
Buffer solutionpH: 7.4 / Details: Detergent added shortly before freezing
Buffer component
IDConc.NameFormulaBuffer-ID
150 mMTris1
2150 mMsodium chlorideNaCl1
30.06 mMn-Dodecyl-B-D-Maltopyranoside1
SpecimenConc.: 1.65 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportGrid material: COPPER / Grid mesh size: 400 divisions/in. / Grid type: Quantifoil R1.2/1.3
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 277 K / Details: 3 s blot time

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal magnification: 29000 X / Nominal defocus max: 1500 nm / Nominal defocus min: 500 nm / Cs: 2.7 mm / C2 aperture diameter: 70 µm / Alignment procedure: COMA FREE
Specimen holderCryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER
Image recordingAverage exposure time: 9.75 sec. / Electron dose: 50 e/Å2 / Detector mode: COUNTING / Film or detector model: GATAN K2 SUMMIT (4k x 4k) / Num. of real images: 3465
Image scansWidth: 3838 / Height: 3710 / Movie frames/image: 39

-
Processing

SoftwareName: PHENIX / Version: 1.18.2_3874: / Classification: refinement
EM software
IDNameVersionCategoryDetails
1cryoSPARC3.2particle selectionIterative automated and template picking
2Leginonimage acquisition
4Gctf1.06CTF correction
7UCSF Chimeramodel fitting
9Rosettamodel refinement
10RELION3.1initial Euler assignment
11cryoSPARC3.2final Euler assignment
12RELION3.1classification
13cryoSPARC3.23D reconstructionLocal refinement
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
SymmetryPoint symmetry: C1 (asymmetric)
3D reconstructionResolution: 3.3 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 96012
Details: Particles were symmetry expanded and sorted on a single S protein RBD to classify only antibody-bound protomers using Relion 3.1. A mask was applied to the RBD and antibody Fv region, the ...Details: Particles were symmetry expanded and sorted on a single S protein RBD to classify only antibody-bound protomers using Relion 3.1. A mask was applied to the RBD and antibody Fv region, the remaining signal was subtracted, and the remaining signal was refined locally using cryoSPARC.
Symmetry type: POINT
Atomic model buildingProtocol: RIGID BODY FIT / Space: REAL
Atomic model buildingPDB-ID: 6VXX
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.0233464
ELECTRON MICROSCOPYf_angle_d1.8994706
ELECTRON MICROSCOPYf_dihedral_angle_d9.7931242
ELECTRON MICROSCOPYf_chiral_restr0.111526
ELECTRON MICROSCOPYf_plane_restr0.008597

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbjlvh1.pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more