[English] 日本語
Yorodumi
- PDB-7p09: Human mitochondrial Lon protease with substrate in the ATPase domain -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7p09
TitleHuman mitochondrial Lon protease with substrate in the ATPase domain
Components
  • Lon protease homolog, mitochondrial
  • Unknown peptide from human mitochondrial transcription factor A (TFAM)
KeywordsHYDROLASE / Protease / Mitochondria / AAA+
Function / homology
Function and homology information


oxidation-dependent protein catabolic process / PH domain binding / mitochondrial protein catabolic process / G-quadruplex DNA binding / endopeptidase La / mitochondrial DNA metabolic process / mitochondrial genome maintenance / ATP-dependent peptidase activity / protein quality control for misfolded or incompletely synthesized proteins / mitochondrial nucleoid ...oxidation-dependent protein catabolic process / PH domain binding / mitochondrial protein catabolic process / G-quadruplex DNA binding / endopeptidase La / mitochondrial DNA metabolic process / mitochondrial genome maintenance / ATP-dependent peptidase activity / protein quality control for misfolded or incompletely synthesized proteins / mitochondrial nucleoid / insulin receptor substrate binding / chaperone-mediated protein complex assembly / DNA polymerase binding / regulation of peptidyl-tyrosine phosphorylation / negative regulation of insulin receptor signaling pathway / Mitochondrial protein degradation / proteolysis involved in protein catabolic process / mitochondrion organization / ADP binding / protein catabolic process / single-stranded DNA binding / cellular response to oxidative stress / sequence-specific DNA binding / single-stranded RNA binding / response to hypoxia / mitochondrial matrix / serine-type endopeptidase activity / ATP hydrolysis activity / mitochondrion / nucleoplasm / ATP binding / identical protein binding / membrane / cytosol
Similarity search - Function
Lon protease homologue, chloroplastic/mitochondrial / Lon protease, bacterial/eukaryotic-type / Lon protease AAA+ ATPase lid domain / Peptidase S16, active site / ATP-dependent serine proteases, lon family, serine active site. / Lon proteolytic domain profile. / Peptidase S16, Lon proteolytic domain / Lon protease / Lon protease (S16) C-terminal proteolytic domain / Lon N-terminal domain profile. ...Lon protease homologue, chloroplastic/mitochondrial / Lon protease, bacterial/eukaryotic-type / Lon protease AAA+ ATPase lid domain / Peptidase S16, active site / ATP-dependent serine proteases, lon family, serine active site. / Lon proteolytic domain profile. / Peptidase S16, Lon proteolytic domain / Lon protease / Lon protease (S16) C-terminal proteolytic domain / Lon N-terminal domain profile. / Lon protease, N-terminal domain / Lon protease, N-terminal domain superfamily / ATP-dependent protease La (LON) substrate-binding domain / Found in ATP-dependent protease La (LON) / PUA-like superfamily / ATPase family associated with various cellular activities (AAA) / ATPase, AAA-type, core / Ribosomal protein S5 domain 2-type fold, subgroup / Ribosomal protein S5 domain 2-type fold / ATPases associated with a variety of cellular activities / AAA+ ATPase domain / P-loop containing nucleoside triphosphate hydrolase
Similarity search - Domain/homology
ADENOSINE-5'-DIPHOSPHATE / ADENOSINE-5'-TRIPHOSPHATE / Lon protease homolog, mitochondrial
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.7 Å
AuthorsValentin Gese, G. / Shahzad, S. / Hallberg, B.M.
CitationJournal: To Be Published
Title: A dual allosteric pathway drives human mitochondrial Lon
Authors: Valentin Gese, G. / Shahzad, S. / Pardo-Hernandez, C. / Wramstedt, A. / Falkenberg, M. / Hallberg, M.
History
DepositionJun 29, 2021Deposition site: PDBE / Processing site: PDBE
Revision 1.0Aug 11, 2021Provider: repository / Type: Initial release
Revision 1.1Jul 17, 2024Group: Data collection / Refinement description
Category: chem_comp_atom / chem_comp_bond ...chem_comp_atom / chem_comp_bond / em_3d_fitting_list / em_admin / pdbx_initial_refinement_model
Item: _em_3d_fitting_list.accession_code / _em_3d_fitting_list.initial_refinement_model_id ..._em_3d_fitting_list.accession_code / _em_3d_fitting_list.initial_refinement_model_id / _em_3d_fitting_list.source_name / _em_3d_fitting_list.type / _em_admin.last_update

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Simplified surface model + fitted atomic model
  • EMDB-13146
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-13146
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Lon protease homolog, mitochondrial
B: Lon protease homolog, mitochondrial
C: Lon protease homolog, mitochondrial
D: Lon protease homolog, mitochondrial
E: Lon protease homolog, mitochondrial
F: Lon protease homolog, mitochondrial
G: Unknown peptide from human mitochondrial transcription factor A (TFAM)
hetero molecules


Theoretical massNumber of molelcules
Total (without water)595,97317
Polymers592,9937
Non-polymers2,98010
Water00
1


  • Idetical with deposited unit
  • defined by author&software
  • Evidence: gel filtration
TypeNameSymmetry operationNumber
identity operation1_5551
Buried area37510 Å2
ΔGint-150 kcal/mol
Surface area120220 Å2
MethodPISA

-
Components

#1: Protein
Lon protease homolog, mitochondrial / LONHs / Lon protease-like protein / LONP / Mitochondrial ATP-dependent protease Lon / Serine protease 15


Mass: 98673.164 Da / Num. of mol.: 6
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: LONP1, PRSS15 / Production host: Escherichia coli (E. coli) / References: UniProt: P36776, endopeptidase La
#2: Protein/peptide Unknown peptide from human mitochondrial transcription factor A (TFAM)


Mass: 954.168 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Escherichia coli (E. coli)
#3: Chemical
ChemComp-ATP / ADENOSINE-5'-TRIPHOSPHATE


Mass: 507.181 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: C10H16N5O13P3 / Comment: ATP, energy-carrying molecule*YM
#4: Chemical
ChemComp-MG / MAGNESIUM ION


Mass: 24.305 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: Mg
#5: Chemical ChemComp-ADP / ADENOSINE-5'-DIPHOSPHATE


Mass: 427.201 Da / Num. of mol.: 2 / Source method: obtained synthetically / Formula: C10H15N5O10P2 / Comment: ADP, energy-carrying molecule*YM
Has ligand of interestN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Composite map of human mitochondrial LonP1 / Type: COMPLEX
Details: Composite map of three maps refined with a focus on the Lan domains, the ATPase domains and the protease domains, respectively
Entity ID: #1-#2 / Source: RECOMBINANT
Molecular weightValue: 0.591 MDa / Experimental value: NO
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Escherichia coli (E. coli)
Buffer solutionpH: 7.5
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: SPOT SCAN
Electron lensMode: BRIGHT FIELD
Image recordingAverage exposure time: 1.5 sec. / Electron dose: 51 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k)

-
Processing

SoftwareName: PHENIX / Version: 1.19_4085: / Classification: refinement
EM software
IDNameVersionCategory
7Coot0.93model fitting
13PHENIX1.19.2model refinement
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 2.7 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 152455
Details: This is a combined map from three focused refienements. The Lan domain, the ATPase domain and the protease domain focused maps with a 0.143 FSC resolution of 7.4, 2.7 and 2.75 angstroms.
Symmetry type: POINT
Atomic model buildingProtocol: FLEXIBLE FIT / Space: REAL
Atomic model buildingPDB-ID: 3M6A
Pdb chain-ID: A / Accession code: 3M6A / Source name: PDB / Type: experimental model
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00225543
ELECTRON MICROSCOPYf_angle_d0.42534592
ELECTRON MICROSCOPYf_dihedral_angle_d4.5523493
ELECTRON MICROSCOPYf_chiral_restr0.0393952
ELECTRON MICROSCOPYf_plane_restr0.0034439

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more