[English] 日本語
Yorodumi- PDB-7my3: CryoEM structure of neutralizing nanobody Nb12 in complex with SA... -
+Open data
-Basic information
Entry | Database: PDB / ID: 7my3 | ||||||
---|---|---|---|---|---|---|---|
Title | CryoEM structure of neutralizing nanobody Nb12 in complex with SARS-CoV2 spike | ||||||
Components |
| ||||||
Keywords | IMMUNE SYSTEM/VIRAL PROTEIN / SARS-CoV2 / nanobody / neutralizing / spike / IMMUNE SYSTEM-VIRAL PROTEIN complex | ||||||
Function / homology | Function and homology information Maturation of spike protein / viral translation / Translation of Structural Proteins / Virion Assembly and Release / host cell surface / host extracellular space / suppression by virus of host tetherin activity / Induction of Cell-Cell Fusion / structural constituent of virion / entry receptor-mediated virion attachment to host cell ...Maturation of spike protein / viral translation / Translation of Structural Proteins / Virion Assembly and Release / host cell surface / host extracellular space / suppression by virus of host tetherin activity / Induction of Cell-Cell Fusion / structural constituent of virion / entry receptor-mediated virion attachment to host cell / host cell endoplasmic reticulum-Golgi intermediate compartment membrane / receptor-mediated endocytosis of virus by host cell / membrane fusion / Attachment and Entry / positive regulation of viral entry into host cell / receptor-mediated virion attachment to host cell / receptor ligand activity / host cell surface receptor binding / symbiont-mediated suppression of host innate immune response / fusion of virus membrane with host plasma membrane / fusion of virus membrane with host endosome membrane / viral envelope / virion attachment to host cell / SARS-CoV-2 activates/modulates innate and adaptive immune responses / host cell plasma membrane / virion membrane / identical protein binding / membrane / plasma membrane Similarity search - Function | ||||||
Biological species | Severe acute respiratory syndrome coronavirus 2 Mus musculus (house mouse) | ||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.9 Å | ||||||
Authors | Xu, K. / Kwong, P.D. | ||||||
Funding support | United States, 1items
| ||||||
Citation | Journal: Nature / Year: 2021 Title: Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Authors: Jianliang Xu / Kai Xu / Seolkyoung Jung / Andrea Conte / Jenna Lieberman / Frauke Muecksch / Julio Cesar Cetrulo Lorenzi / Solji Park / Fabian Schmidt / Zijun Wang / Yaoxing Huang / Yang Luo ...Authors: Jianliang Xu / Kai Xu / Seolkyoung Jung / Andrea Conte / Jenna Lieberman / Frauke Muecksch / Julio Cesar Cetrulo Lorenzi / Solji Park / Fabian Schmidt / Zijun Wang / Yaoxing Huang / Yang Luo / Manoj S Nair / Pengfei Wang / Jonathan E Schulz / Lino Tessarollo / Tatsiana Bylund / Gwo-Yu Chuang / Adam S Olia / Tyler Stephens / I-Ting Teng / Yaroslav Tsybovsky / Tongqing Zhou / Vincent Munster / David D Ho / Theodora Hatziioannou / Paul D Bieniasz / Michel C Nussenzweig / Peter D Kwong / Rafael Casellas / Abstract: Since the start of the COVID-19 pandemic, SARS-CoV-2 has caused millions of deaths worldwide. Although a number of vaccines have been deployed, the continual evolution of the receptor-binding domain ...Since the start of the COVID-19 pandemic, SARS-CoV-2 has caused millions of deaths worldwide. Although a number of vaccines have been deployed, the continual evolution of the receptor-binding domain (RBD) of the virus has challenged their efficacy. In particular, the emerging variants B.1.1.7, B.1.351 and P.1 (first detected in the UK, South Africa and Brazil, respectively) have compromised the efficacy of sera from patients who have recovered from COVID-19 and immunotherapies that have received emergency use authorization. One potential alternative to avert viral escape is the use of camelid VHHs (variable heavy chain domains of heavy chain antibody (also known as nanobodies)), which can recognize epitopes that are often inaccessible to conventional antibodies. Here, we isolate anti-RBD nanobodies from llamas and from mice that we engineered to produce VHHs cloned from alpacas, dromedaries and Bactrian camels. We identified two groups of highly neutralizing nanobodies. Group 1 circumvents antigenic drift by recognizing an RBD region that is highly conserved in coronaviruses but rarely targeted by human antibodies. Group 2 is almost exclusively focused to the RBD-ACE2 interface and does not neutralize SARS-CoV-2 variants that carry E484K or N501Y substitutions. However, nanobodies in group 2 retain full neutralization activity against these variants when expressed as homotrimers, and-to our knowledge-rival the most potent antibodies against SARS-CoV-2 that have been produced to date. These findings suggest that multivalent nanobodies overcome SARS-CoV-2 mutations through two separate mechanisms: enhanced avidity for the ACE2-binding domain and recognition of conserved epitopes that are largely inaccessible to human antibodies. Therefore, although new SARS-CoV-2 mutants will continue to emerge, nanobodies represent promising tools to prevent COVID-19 mortality when vaccines are compromised. | ||||||
History |
|
-Structure visualization
Movie |
Movie viewer |
---|---|
Structure viewer | Molecule: MolmilJmol/JSmol |
-Downloads & links
-Download
PDBx/mmCIF format | 7my3.cif.gz | 606.8 KB | Display | PDBx/mmCIF format |
---|---|---|---|---|
PDB format | pdb7my3.ent.gz | 487.4 KB | Display | PDB format |
PDBx/mmJSON format | 7my3.json.gz | Tree view | PDBx/mmJSON format | |
Others | Other downloads |
-Validation report
Arichive directory | https://data.pdbj.org/pub/pdb/validation_reports/my/7my3 ftp://data.pdbj.org/pub/pdb/validation_reports/my/7my3 | HTTPS FTP |
---|
-Related structure data
Related structure data | 24078MC 7my2C C: citing same article (ref.) M: map data used to model this data |
---|---|
Similar structure data |
-Links
-Assembly
Deposited unit |
|
---|---|
1 |
|
-Components
#1: Protein | Mass: 142427.438 Da / Num. of mol.: 3 Mutation: R682G, R683S, R685S, F817P, A892P, A899P, A942P, K986P, V987P Source method: isolated from a genetically manipulated source Source: (gene. exp.) Severe acute respiratory syndrome coronavirus 2 Gene: S, 2 / Production host: Homo sapiens (human) / References: UniProt: P0DTC2 #2: Antibody | Mass: 13903.373 Da / Num. of mol.: 3 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Mus musculus (house mouse) / Production host: Escherichia coli (E. coli) #3: Polysaccharide | beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta- ...beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose #4: Polysaccharide | 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose Source method: isolated from a genetically manipulated source #5: Sugar | ChemComp-NAG / Has ligand of interest | N | Has protein modification | Y | |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-Sample preparation
Component |
| ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Molecular weight |
| ||||||||||||||||||||||||||||
Source (natural) |
| ||||||||||||||||||||||||||||
Source (recombinant) |
| ||||||||||||||||||||||||||||
Buffer solution | pH: 7.4 / Details: 5mM Hepes pH7.4, 150mM NaCl | ||||||||||||||||||||||||||||
Buffer component | Formula: HBS | ||||||||||||||||||||||||||||
Specimen | Conc.: 0.5 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES | ||||||||||||||||||||||||||||
Specimen support | Grid material: GOLD / Grid type: Quantifoil R2/2 | ||||||||||||||||||||||||||||
Vitrification | Instrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 95 % / Chamber temperature: 293 K |
-Electron microscopy imaging
Experimental equipment | Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM |
Electron lens | Mode: BRIGHT FIELD / C2 aperture diameter: 70 µm |
Specimen holder | Cryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER |
Image recording | Average exposure time: 2 sec. / Electron dose: 40.3 e/Å2 / Film or detector model: GATAN K3 (6k x 4k) / Num. of grids imaged: 1 / Num. of real images: 6796 |
-Processing
EM software |
| ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||||||||||||||||||||||
Particle selection | Num. of particles selected: 1666677 | ||||||||||||||||||||||||||||||||||||
Symmetry | Point symmetry: C1 (asymmetric) | ||||||||||||||||||||||||||||||||||||
3D reconstruction | Resolution: 2.9 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 2775249 / Num. of class averages: 37 / Symmetry type: POINT | ||||||||||||||||||||||||||||||||||||
Atomic model building | Protocol: FLEXIBLE FIT / Space: REAL | ||||||||||||||||||||||||||||||||||||
Atomic model building | PDB-ID: 6XKL Pdb chain-ID: A / Accession code: 6XKL / Source name: PDB / Type: experimental model |