+データを開く
-基本情報
登録情報 | データベース: PDB / ID: 7mvy | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
タイトル | Single particle cryo-EM structure of the Chaetomium thermophilum Nup188-Nic96 complex (Nup188 residues 1-1858; Nic96 residues 240-301) | |||||||||||||||
要素 |
| |||||||||||||||
キーワード | TRANSPORT PROTEIN / nuclear pore complex / nucleocytoplasmic transport / alpha-helical solenoid / nuclear pore | |||||||||||||||
機能・相同性 | 機能・相同性情報 structural constituent of nuclear pore / mRNA transport / nuclear pore / protein transport / nuclear membrane 類似検索 - 分子機能 | |||||||||||||||
生物種 | Chaetomium thermophilum (菌類) | |||||||||||||||
手法 | 電子顕微鏡法 / 単粒子再構成法 / クライオ電子顕微鏡法 / 解像度: 2.39 Å | |||||||||||||||
データ登録者 | Petrovic, S. / Samanta, D. / Perriches, T. / Bley, C.J. / Thierbach, K. / Brown, B. / Nie, S. / Mobbs, G.W. / Stevens, T.A. / Liu, X. ...Petrovic, S. / Samanta, D. / Perriches, T. / Bley, C.J. / Thierbach, K. / Brown, B. / Nie, S. / Mobbs, G.W. / Stevens, T.A. / Liu, X. / Tomaleri, G.P. / Schaus, L. / Hoelz, A. | |||||||||||||||
資金援助 | 米国, 4件
| |||||||||||||||
引用 | ジャーナル: Science / 年: 2022 タイトル: Architecture of the linker-scaffold in the nuclear pore. 著者: Stefan Petrovic / Dipanjan Samanta / Thibaud Perriches / Christopher J Bley / Karsten Thierbach / Bonnie Brown / Si Nie / George W Mobbs / Taylor A Stevens / Xiaoyu Liu / Giovani Pinton ...著者: Stefan Petrovic / Dipanjan Samanta / Thibaud Perriches / Christopher J Bley / Karsten Thierbach / Bonnie Brown / Si Nie / George W Mobbs / Taylor A Stevens / Xiaoyu Liu / Giovani Pinton Tomaleri / Lucas Schaus / André Hoelz / 要旨: INTRODUCTION In eukaryotic cells, the selective bidirectional transport of macromolecules between the nucleus and cytoplasm occurs through the nuclear pore complex (NPC). Embedded in nuclear envelope ...INTRODUCTION In eukaryotic cells, the selective bidirectional transport of macromolecules between the nucleus and cytoplasm occurs through the nuclear pore complex (NPC). Embedded in nuclear envelope pores, the ~110-MDa human NPC is an ~1200-Å-wide and ~750-Å-tall assembly of ~1000 proteins, collectively termed nucleoporins. Because of the NPC's eightfold rotational symmetry along the nucleocytoplasmic axis, each of the ~34 different nucleoporins occurs in multiples of eight. Architecturally, the NPC's symmetric core is composed of an inner ring encircling the central transport channel and two outer rings anchored on both sides of the nuclear envelope. Because of its central role in the flow of genetic information from DNA to RNA to protein, the NPC is commonly targeted in viral infections and its nucleoporin constituents are associated with a plethora of diseases. RATIONALE Although the arrangement of most scaffold nucleoporins in the NPC's symmetric core was determined by quantitative docking of crystal structures into cryo-electron tomographic (cryo-ET) maps of intact NPCs, the topology and molecular details of their cohesion by multivalent linker nucleoporins have remained elusive. Recently, in situ cryo-ET reconstructions of NPCs from various species have indicated that the NPC's inner ring is capable of reversible constriction and dilation in response to variations in nuclear envelope membrane tension, thereby modulating the diameter of the central transport channel by ~200 Å. We combined biochemical reconstitution, high-resolution crystal and single-particle cryo-electron microscopy (cryo-EM) structure determination, docking into cryo-ET maps, and physiological validation to elucidate the molecular architecture of the linker-scaffold interaction network that not only is essential for the NPC's integrity but also confers the plasticity and robustness necessary to allow and withstand such large-scale conformational changes. RESULTS By biochemically mapping scaffold-binding regions of all fungal and human linker nucleoporins and determining crystal and single-particle cryo-EM structures of linker-scaffold complexes, we completed the characterization of the biochemically tractable linker-scaffold network and established its evolutionary conservation, despite considerable sequence divergence. We determined a series of crystal and single-particle cryo-EM structures of the intact Nup188 and Nup192 scaffold hubs bound to their Nic96, Nup145N, and Nup53 linker nucleoporin binding regions, revealing that both proteins form distinct question mark-shaped keystones of two evolutionarily conserved hetero‑octameric inner ring complexes. Linkers bind to scaffold surface pockets through short defined motifs, with flanking regions commonly forming additional disperse interactions that reinforce the binding. Using a structure‑guided functional analysis in , we confirmed the robustness of linker‑scaffold interactions and established the physiological relevance of our biochemical and structural findings. The near-atomic composite structures resulting from quantitative docking of experimental structures into human and cryo-ET maps of constricted and dilated NPCs structurally disambiguated the positioning of the Nup188 and Nup192 hubs in the intact fungal and human NPC and revealed the topology of the linker-scaffold network. The linker-scaffold gives rise to eight relatively rigid inner ring spokes that are flexibly interconnected to allow for the formation of lateral channels. Unexpectedly, we uncovered that linker‑scaffold interactions play an opposing role in the outer rings by forming tight cross-link staples between the eight nuclear and cytoplasmic outer ring spokes, thereby limiting the dilatory movements to the inner ring. CONCLUSION We have substantially advanced the structural and biochemical characterization of the symmetric core of the and human NPCs and determined near-atomic composite structures. The composite structures uncover the molecular mechanism by which the evolutionarily conserved linker‑scaffold establishes the NPC's integrity while simultaneously allowing for the observed plasticity of the central transport channel. The composite structures are roadmaps for the mechanistic dissection of NPC assembly and disassembly, the etiology of NPC‑associated diseases, the role of NPC dilation in nucleocytoplasmic transport of soluble and integral membrane protein cargos, and the anchoring of asymmetric nucleoporins. [Figure: see text]. | |||||||||||||||
履歴 |
|
-構造の表示
構造ビューア | 分子: MolmilJmol/JSmol |
---|
-ダウンロードとリンク
-ダウンロード
PDBx/mmCIF形式 | 7mvy.cif.gz | 562.9 KB | 表示 | PDBx/mmCIF形式 |
---|---|---|---|---|
PDB形式 | pdb7mvy.ent.gz | 455.2 KB | 表示 | PDB形式 |
PDBx/mmJSON形式 | 7mvy.json.gz | ツリー表示 | PDBx/mmJSON形式 | |
その他 | その他のダウンロード |
-検証レポート
文書・要旨 | 7mvy_validation.pdf.gz | 904.1 KB | 表示 | wwPDB検証レポート |
---|---|---|---|---|
文書・詳細版 | 7mvy_full_validation.pdf.gz | 909.1 KB | 表示 | |
XML形式データ | 7mvy_validation.xml.gz | 57.3 KB | 表示 | |
CIF形式データ | 7mvy_validation.cif.gz | 86 KB | 表示 | |
アーカイブディレクトリ | https://data.pdbj.org/pub/pdb/validation_reports/mv/7mvy ftp://data.pdbj.org/pub/pdb/validation_reports/mv/7mvy | HTTPS FTP |
-関連構造データ
関連構造データ | 24058MC 7mvtC 7mvuC 7mvvC 7mvwC 7mvxC 7mvzC 7mw0C 7mw1C 7tbiC 7tbjC 7tbkC M: このデータのモデリングに利用したマップデータ C: 同じ文献を引用 (文献) |
---|---|
類似構造データ | 類似検索 - 機能・相同性F&H 検索 |
-リンク
-集合体
登録構造単位 |
|
---|---|
1 |
|
-要素
#1: タンパク質 | 分子量: 204429.719 Da / 分子数: 1 / 由来タイプ: 組換発現 由来: (組換発現) Chaetomium thermophilum (strain DSM 1495 / CBS 144.50 / IMI 039719) (菌類) 株: DSM 1495 / CBS 144.50 / IMI 039719 / 遺伝子: NUP188, CTHT_0070850 / 発現宿主: Escherichia coli (大腸菌) / 参照: UniProt: G0SFH5 |
---|---|
#2: タンパク質 | 分子量: 7173.938 Da / 分子数: 1 / 由来タイプ: 組換発現 由来: (組換発現) Chaetomium thermophilum (strain DSM 1495 / CBS 144.50 / IMI 039719) (菌類) 株: DSM 1495 / CBS 144.50 / IMI 039719 / 遺伝子: NIC96, CTHT_0008480 / 発現宿主: Escherichia coli (大腸菌) / 参照: UniProt: G0S024 |
-実験情報
-実験
実験 | 手法: 電子顕微鏡法 |
---|---|
EM実験 | 試料の集合状態: PARTICLE / 3次元再構成法: 単粒子再構成法 |
-試料調製
構成要素 | 名称: Nup188-Nic96 heterodimer / タイプ: COMPLEX / Entity ID: all / 由来: RECOMBINANT | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
分子量 | 値: 0.2112 MDa / 実験値: NO | ||||||||||||||||||||
由来(天然) | 生物種: Chaetomium thermophilum var. thermophilum DSM 1495 (菌類) | ||||||||||||||||||||
由来(組換発現) | 生物種: Escherichia coli (大腸菌) | ||||||||||||||||||||
緩衝液 | pH: 8 | ||||||||||||||||||||
緩衝液成分 |
| ||||||||||||||||||||
試料 | 濃度: 0.5 mg/ml / 包埋: NO / シャドウイング: NO / 染色: NO / 凍結: YES | ||||||||||||||||||||
試料支持 | グリッドの材料: COPPER / グリッドのサイズ: 300 divisions/in. / グリッドのタイプ: Quantifoil R2/2 | ||||||||||||||||||||
急速凍結 | 装置: FEI VITROBOT MARK IV / 凍結剤: ETHANE / 湿度: 100 % / 凍結前の試料温度: 277 K |
-電子顕微鏡撮影
実験機器 | モデル: Titan Krios / 画像提供: FEI Company |
---|---|
顕微鏡 | モデル: FEI TITAN KRIOS |
電子銃 | 電子線源: FIELD EMISSION GUN / 加速電圧: 300 kV / 照射モード: FLOOD BEAM |
電子レンズ | モード: BRIGHT FIELD / 倍率(公称値): 130000 X / 最大 デフォーカス(公称値): 2500 nm / 最小 デフォーカス(公称値): 800 nm / Cs: 2.7 mm / アライメント法: COMA FREE |
試料ホルダ | 凍結剤: NITROGEN |
撮影 | 平均露光時間: 2 sec. / 電子線照射量: 103 e/Å2 フィルム・検出器のモデル: GATAN K3 BIOQUANTUM (6k x 4k) 撮影したグリッド数: 1 / 実像数: 10740 |
電子光学装置 | エネルギーフィルター名称: GIF Bioquantum |
-解析
EMソフトウェア |
| ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF補正 | タイプ: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||||||||||||||||||||||||||||||
粒子像の選択 | 選択した粒子像数: 6317697 | ||||||||||||||||||||||||||||||||||||||||||||
対称性 | 点対称性: C1 (非対称) | ||||||||||||||||||||||||||||||||||||||||||||
3次元再構成 | 解像度: 2.39 Å / 解像度の算出法: FSC 0.143 CUT-OFF / 粒子像の数: 709123 / 対称性のタイプ: POINT | ||||||||||||||||||||||||||||||||||||||||||||
原子モデル構築 |
| ||||||||||||||||||||||||||||||||||||||||||||
精密化 | 立体化学のターゲット値: GeoStd + Monomer Library + CDL v1.2 | ||||||||||||||||||||||||||||||||||||||||||||
原子変位パラメータ | Biso mean: 78.12 Å2 | ||||||||||||||||||||||||||||||||||||||||||||
拘束条件 |
|