[English] 日本語
Yorodumi
- EMDB-6315: Activation of GTP Hydrolysis in mRNA-tRNA Translocation by Elonga... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-6315
TitleActivation of GTP Hydrolysis in mRNA-tRNA Translocation by Elongation Factor G
Map datareconstruction of 70S ribosome complex
Sample
  • Sample: 70S-P-tRNA-E-tRNA bound with EF-G H91A
  • Complex: 70S ribosome
  • Protein or peptide: Elongation factor G
KeywordsCryo-EM / Ribosome / translocation / Elongation factor G / GTP hydrolysis
Function / homology
Function and homology information


ribosome disassembly / negative regulation of cytoplasmic translational initiation / guanosine tetraphosphate binding / stringent response / ornithine decarboxylase inhibitor activity / transcription antitermination factor activity, RNA binding / misfolded RNA binding / Group I intron splicing / RNA folding / translational elongation ...ribosome disassembly / negative regulation of cytoplasmic translational initiation / guanosine tetraphosphate binding / stringent response / ornithine decarboxylase inhibitor activity / transcription antitermination factor activity, RNA binding / misfolded RNA binding / Group I intron splicing / RNA folding / translational elongation / transcriptional attenuation / endoribonuclease inhibitor activity / RNA-binding transcription regulator activity / positive regulation of ribosome biogenesis / negative regulation of cytoplasmic translation / translation elongation factor activity / four-way junction DNA binding / translational termination / DnaA-L2 complex / translation repressor activity / negative regulation of DNA-templated DNA replication initiation / negative regulation of translational initiation / regulation of mRNA stability / mRNA regulatory element binding translation repressor activity / ribosome assembly / assembly of large subunit precursor of preribosome / positive regulation of RNA splicing / transcription elongation factor complex / cytosolic ribosome assembly / regulation of DNA-templated transcription elongation / DNA endonuclease activity / response to reactive oxygen species / transcription antitermination / regulation of cell growth / translational initiation / DNA-templated transcription termination / maintenance of translational fidelity / response to radiation / mRNA 5'-UTR binding / ribosomal small subunit biogenesis / small ribosomal subunit rRNA binding / large ribosomal subunit / ribosome biogenesis / ribosome binding / regulation of translation / ribosomal small subunit assembly / small ribosomal subunit / 5S rRNA binding / large ribosomal subunit rRNA binding / transferase activity / cytosolic small ribosomal subunit / ribosomal large subunit assembly / Hydrolases; Acting on acid anhydrides; Acting on GTP to facilitate cellular and subcellular movement / cytoplasmic translation / cytosolic large ribosomal subunit / tRNA binding / molecular adaptor activity / negative regulation of translation / rRNA binding / ribosome / structural constituent of ribosome / translation / response to antibiotic / negative regulation of DNA-templated transcription / GTPase activity / mRNA binding / GTP binding / DNA binding / RNA binding / zinc ion binding / membrane / cytosol / cytoplasm
Similarity search - Function
Translation elongation factor EFG/EF2 / : / Elongation factor G, domain III / EFG, domain V / Ribosomal protein L1, bacterial-type / Elongation Factor G, domain II / Elongation Factor G, domain III / Ribosomal protein L10, eubacterial, conserved site / Ribosomal protein L10 signature. / Translation elongation factor EFG/EF2, domain IV ...Translation elongation factor EFG/EF2 / : / Elongation factor G, domain III / EFG, domain V / Ribosomal protein L1, bacterial-type / Elongation Factor G, domain II / Elongation Factor G, domain III / Ribosomal protein L10, eubacterial, conserved site / Ribosomal protein L10 signature. / Translation elongation factor EFG/EF2, domain IV / Elongation factor G, domain IV / Elongation factor G, domain IV / Elongation factor G C-terminus / Ribosomal protein L10 / Elongation factor EFG, domain V-like / Elongation factor G C-terminus / EF-G domain III/V-like / Tr-type G domain, conserved site / Translational (tr)-type guanine nucleotide-binding (G) domain signature. / : / Ribosomal protein L1, conserved site / Ribosomal protein L1 signature. / Ribosomal protein L1 / Ribosomal protein L1, 3-layer alpha/beta-sandwich / Translation elongation factor EFTu-like, domain 2 / Ribosomal protein S21, conserved site / Ribosomal protein S21 signature. / Ribosomal protein L25, short-form / Ribosomal protein S14, bacterial/plastid / Ribosomal protein L1-like / Ribosomal protein L1/ribosomal biogenesis protein / Ribosomal protein L1p/L10e family / Elongation factor Tu domain 2 / Ribosomal protein L11, bacterial-type / Ribosomal protein L31 type A / Ribosomal protein S21 superfamily / Ribosomal protein S21 / Ribosomal protein S16, conserved site / Ribosomal protein S16 signature. / Ribosomal protein S21 / Ribosomal protein L31 signature. / Translational (tr)-type GTP-binding domain / Elongation factor Tu GTP binding domain / Translational (tr)-type guanine nucleotide-binding (G) domain profile. / Ribosomal protein L31 / Ribosomal protein L31 superfamily / Ribosomal protein L31 / : / Ribosomal protein L21, conserved site / Ribosomal protein L21 signature. / Ribosomal protein L11, conserved site / Ribosomal protein L11 signature. / Ribosomal protein L10-like domain superfamily / Ribosomal protein L16 signature 1. / Ribosomal protein L10P / Ribosomal protein L10 / : / Ribosomal protein L6, conserved site / Ribosomal protein L6 signature 1. / Ribosomal protein L16, conserved site / Ribosomal protein L16 signature 2. / Ribosomal protein L9 signature. / Ribosomal protein L9, bacteria/chloroplast / Ribosomal protein L9, C-terminal / Ribosomal protein L9, C-terminal domain / Ribosomal protein L9, C-terminal domain superfamily / Ribosomal protein L17 signature. / Ribosomal L25p family / Ribosomal protein L25 / Ribosomal protein L11, N-terminal / Ribosomal protein L11, N-terminal domain / Ribosomal protein L11/L12 / Ribosomal protein L11, C-terminal / Ribosomal protein L11, C-terminal domain superfamily / Ribosomal protein L11/L12, N-terminal domain superfamily / Ribosomal protein L11, RNA binding domain / Ribosomal protein L11/L12 / Ribosomal protein L36 signature. / Ribosomal protein L28/L24 superfamily / Ribosomal protein L25/Gln-tRNA synthetase, N-terminal / Ribosomal protein L25/Gln-tRNA synthetase, anti-codon-binding domain superfamily / Ribosomal protein L32p, bacterial type / Ribosomal protein L9, N-terminal domain superfamily / Ribosomal protein L9 / Ribosomal protein L9, N-terminal / Ribosomal protein L9, N-terminal domain / : / : / Ribosomal protein L28 / Ribosomal protein L35, conserved site / Ribosomal protein L35 signature. / Ribosomal protein L33, conserved site / Ribosomal protein L33 signature. / Ribosomal protein L35, non-mitochondrial / Ribosomal protein L5, bacterial-type / Ribosomal protein L18, bacterial-type / Ribosomal protein L6, bacterial-type / Ribosomal protein L9/RNase H1, N-terminal / Ribosomal protein L19, conserved site / Ribosomal protein L19 signature.
Similarity search - Domain/homology
Small ribosomal subunit protein bS6 / Small ribosomal subunit protein uS7 / Large ribosomal subunit protein uL15 / Elongation factor G / Large ribosomal subunit protein uL10 / Large ribosomal subunit protein uL11 / Large ribosomal subunit protein bL19 / Large ribosomal subunit protein uL1 / Large ribosomal subunit protein bL20 / Large ribosomal subunit protein bL27 ...Small ribosomal subunit protein bS6 / Small ribosomal subunit protein uS7 / Large ribosomal subunit protein uL15 / Elongation factor G / Large ribosomal subunit protein uL10 / Large ribosomal subunit protein uL11 / Large ribosomal subunit protein bL19 / Large ribosomal subunit protein uL1 / Large ribosomal subunit protein bL20 / Large ribosomal subunit protein bL27 / Large ribosomal subunit protein bL28 / Large ribosomal subunit protein uL29 / Large ribosomal subunit protein bL31 / Large ribosomal subunit protein bL32 / Large ribosomal subunit protein bL33 / Large ribosomal subunit protein bL34 / Large ribosomal subunit protein bL35 / Large ribosomal subunit protein bL36A / Large ribosomal subunit protein bL9 / Small ribosomal subunit protein uS10 / Small ribosomal subunit protein uS11 / Small ribosomal subunit protein uS12 / Small ribosomal subunit protein uS13 / Small ribosomal subunit protein bS16 / Small ribosomal subunit protein bS18 / Small ribosomal subunit protein uS19 / Small ribosomal subunit protein bS20 / Small ribosomal subunit protein uS2 / Small ribosomal subunit protein uS3 / Small ribosomal subunit protein uS4 / Small ribosomal subunit protein uS5 / Small ribosomal subunit protein uS8 / Small ribosomal subunit protein uS9 / Large ribosomal subunit protein uL13 / Large ribosomal subunit protein uL14 / Large ribosomal subunit protein uL16 / Large ribosomal subunit protein uL23 / Large ribosomal subunit protein bL17 / Large ribosomal subunit protein bL21 / Large ribosomal subunit protein uL30 / Large ribosomal subunit protein uL6 / Small ribosomal subunit protein uS14 / Small ribosomal subunit protein uS17 / Large ribosomal subunit protein uL18 / Large ribosomal subunit protein uL2 / Large ribosomal subunit protein uL3 / Large ribosomal subunit protein uL24 / Large ribosomal subunit protein uL4 / Large ribosomal subunit protein uL22 / Large ribosomal subunit protein uL5 / Small ribosomal subunit protein bS21 / Large ribosomal subunit protein bL25 / Small ribosomal subunit protein uS15
Similarity search - Component
Biological speciesEscherichia coli (E. coli)
Methodsingle particle reconstruction / cryo EM / Resolution: 3.6 Å
AuthorsLi W / Liu Z / Koripella RK / Langlois R / Sanyal S / Frank J
CitationJournal: Sci Adv / Year: 2015
Title: Activation of GTP hydrolysis in mRNA-tRNA translocation by elongation factor G.
Authors: Wen Li / Zheng Liu / Ravi Kiran Koripella / Robert Langlois / Suparna Sanyal / Joachim Frank /
Abstract: During protein synthesis, elongation of the polypeptide chain by each amino acid is followed by a translocation step in which mRNA and transfer RNA (tRNA) are advanced by one codon. This crucial step ...During protein synthesis, elongation of the polypeptide chain by each amino acid is followed by a translocation step in which mRNA and transfer RNA (tRNA) are advanced by one codon. This crucial step is catalyzed by elongation factor G (EF-G), a guanosine triphosphatase (GTPase), and accompanied by a rotation between the two ribosomal subunits. A mutant of EF-G, H91A, renders the factor impaired in guanosine triphosphate (GTP) hydrolysis and thereby stabilizes it on the ribosome. We use cryogenic electron microscopy (cryo-EM) at near-atomic resolution to investigate two complexes formed by EF-G H91A in its GTP state with the ribosome, distinguished by the presence or absence of the intersubunit rotation. Comparison of these two structures argues in favor of a direct role of the conserved histidine in the switch II loop of EF-G in GTPase activation, and explains why GTP hydrolysis cannot proceed with EF-G bound to the unrotated form of the ribosome.
History
DepositionApr 9, 2015-
Header (metadata) releaseMay 27, 2015-
Map releaseJul 1, 2015-
UpdateAug 12, 2015-
Current statusAug 12, 2015Processing site: RCSB / Status: Released

-
Structure visualization

Movie
  • Surface view with section colored by density value
  • Surface level: 0.04
  • Imaged by UCSF Chimera
  • Download
  • Surface view colored by height
  • Surface level: 0.04
  • Imaged by UCSF Chimera
  • Download
  • Surface view with fitted model
  • Atomic models: PDB-3j9z
  • Surface level: 0.04
  • Imaged by UCSF Chimera
  • Download
  • Surface view with fitted model
  • Atomic models: PDB-3j9z
  • Surface level: 0.04
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerEM map:
SurfViewMolmilJmol/JSmol
Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_6315.map.gz / Format: CCP4 / Size: 173.8 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
Annotationreconstruction of 70S ribosome complex
Projections & slices

Image control

Size
Brightness
Contrast
Others
AxesZ (Sec.)Y (Row.)X (Col.)
1.05 Å/pix.
x 360 pix.
= 378. Å
1.05 Å/pix.
x 360 pix.
= 378. Å
1.05 Å/pix.
x 360 pix.
= 378. Å

Surface

Projections

Slices (1/3)

Slices (1/2)

Slices (2/3)

Images are generated by Spider.

Voxel sizeX=Y=Z: 1.05 Å
Density
Contour LevelBy AUTHOR: 0.03 / Movie #1: 0.04
Minimum - Maximum-0.15404195 - 0.30451366
Average (Standard dev.)0.00233007 (±0.0165645)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions360360360
Spacing360360360
CellA=B=C: 377.99997 Å
α=β=γ: 90.0 °

CCP4 map header:

modeImage stored as Reals
Å/pix. X/Y/Z1.051.051.05
M x/y/z360360360
origin x/y/z0.0000.0000.000
length x/y/z378.000378.000378.000
α/β/γ90.00090.00090.000
start NX/NY/NZ-147-147-146
NX/NY/NZ294294294
MAP C/R/S123
start NC/NR/NS000
NC/NR/NS360360360
D min/max/mean-0.1540.3050.002

-
Supplemental data

-
Sample components

-
Entire : 70S-P-tRNA-E-tRNA bound with EF-G H91A

EntireName: 70S-P-tRNA-E-tRNA bound with EF-G H91A
Components
  • Sample: 70S-P-tRNA-E-tRNA bound with EF-G H91A
  • Complex: 70S ribosome
  • Protein or peptide: Elongation factor G

-
Supramolecule #1000: 70S-P-tRNA-E-tRNA bound with EF-G H91A

SupramoleculeName: 70S-P-tRNA-E-tRNA bound with EF-G H91A / type: sample / ID: 1000 / Number unique components: 2
Molecular weightExperimental: 2.5 MDa / Theoretical: 2.5 MDa / Method: Sedimentation

-
Supramolecule #1: 70S ribosome

SupramoleculeName: 70S ribosome / type: complex / ID: 1 / Recombinant expression: Yes / Ribosome-details: ribosome-prokaryote: ALL
Source (natural)Organism: Escherichia coli (E. coli)
Recombinant expressionOrganism: Escherichia coli (E. coli)
Molecular weightExperimental: 2.5 MDa / Theoretical: 2.5 MDa

-
Macromolecule #1: Elongation factor G

MacromoleculeName: Elongation factor G / type: protein_or_peptide / ID: 1 / Name.synonym: EF-G / Number of copies: 1 / Oligomeric state: monomer / Recombinant expression: Yes
Source (natural)Organism: Escherichia coli (E. coli)
Recombinant expressionOrganism: Escherichia coli (E. coli)

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation stateparticle

-
Sample preparation

Concentration40 mg/mL
BufferpH: 7.5
VitrificationCryogen name: ETHANE / Chamber humidity: 100 % / Chamber temperature: 93 K / Instrument: FEI VITROBOT MARK IV

-
Electron microscopy

MicroscopeFEI TITAN
DateAug 29, 2013
Image recordingCategory: CCD / Film or detector model: DIRECT ELECTRON DE-12 (4k x 3k) / Digitization - Sampling interval: 0.1 µm / Number real images: 6747 / Bits/pixel: 8
Electron beamAcceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
Electron opticsCalibrated magnification: 58000 / Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Cs: 0.1 mm / Nominal defocus max: 5.0 µm / Nominal defocus min: 1.5 µm / Nominal magnification: 55000
Sample stageSpecimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER

-
Image processing

CTF correctionDetails: CTFFIND3 and CTFIT
Final reconstructionAlgorithm: OTHER / Resolution.type: BY AUTHOR / Resolution: 3.6 Å / Resolution method: OTHER / Software - Name: Relion / Number images used: 90000
Final angle assignmentDetails: Search started from 7.5 degrees

-
Atomic model buiding 1

Initial modelPDB ID:

3j0u
PDB Unreleased entry

SoftwareName: MDFF
RefinementSpace: REAL / Protocol: FLEXIBLE FIT
Output model

PDB-3j9z:
Activation of GTP Hydrolysis in mRNA-tRNA Translocation by Elongation Factor G

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more