[English] 日本語
Yorodumi
- PDB-7c97: Cryo-EM structure of an Escherichia coli RNAP-promoter open compl... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7c97
TitleCryo-EM structure of an Escherichia coli RNAP-promoter open complex (RPo) with SspA
Components
  • (DNA (63-mer)) x 2
  • (DNA-directed RNA polymerase subunit ...) x 4
  • RNA polymerase sigma factor RpoD
  • Stringent starvation protein A
KeywordsTRANSFERASE/DNA / Stringent starvation protein A / RNA polymerase / promoter escape / zinc binding domain / GENE REGULATION / TRANSFERASE-DNA complex
Function / homology
Function and homology information


sigma factor antagonist complex / response to stress / RNA polymerase complex / submerged biofilm formation / response to starvation / cellular response to cell envelope stress / bacterial-type RNA polymerase core enzyme binding / cytosolic DNA-directed RNA polymerase complex / regulation of DNA-templated transcription initiation / sigma factor activity ...sigma factor antagonist complex / response to stress / RNA polymerase complex / submerged biofilm formation / response to starvation / cellular response to cell envelope stress / bacterial-type RNA polymerase core enzyme binding / cytosolic DNA-directed RNA polymerase complex / regulation of DNA-templated transcription initiation / sigma factor activity / bacterial-type flagellum assembly / glutathione transferase / glutathione transferase activity / bacterial-type flagellum-dependent cell motility / nitrate assimilation / glutathione metabolic process / transcription elongation factor complex / regulation of DNA-templated transcription elongation / transcription antitermination / DNA-templated transcription initiation / cell motility / ribonucleoside binding / DNA-directed 5'-3' RNA polymerase activity / DNA-directed RNA polymerase / response to heat / protein-containing complex assembly / intracellular iron ion homeostasis / protein dimerization activity / response to antibiotic / negative regulation of DNA-templated transcription / DNA-templated transcription / positive regulation of DNA-templated transcription / magnesium ion binding / DNA binding / zinc ion binding / membrane / metal ion binding / cytosol / cytoplasm
Similarity search - Function
Stringent starvation protein A, N-terminal / Stringent starvation protein A, C-terminal / : / : / RNA polymerase sigma factor 70, non-essential domain / Sigma-70, non-essential region / RNA polymerase sigma factor 70, region 1.1 / Sigma-70 factor, region 1.1 superfamily / Sigma-70 factor, region 1.1 / Glutathione S-transferase, C-terminal domain ...Stringent starvation protein A, N-terminal / Stringent starvation protein A, C-terminal / : / : / RNA polymerase sigma factor 70, non-essential domain / Sigma-70, non-essential region / RNA polymerase sigma factor 70, region 1.1 / Sigma-70 factor, region 1.1 superfamily / Sigma-70 factor, region 1.1 / Glutathione S-transferase, C-terminal domain / Sigma-70 factors family signature 1. / RNA polymerase sigma factor RpoD, C-terminal / RNA polymerase sigma factor RpoD / : / RNA polymerase sigma-70 region 1.2 / Sigma-70 factor, region 1.2 / RNA polymerase sigma-70 region 3 / Sigma-70 region 3 / Sigma-70 factors family signature 2. / RNA polymerase sigma-70 / RNA polymerase sigma-70 region 4 / Sigma-70, region 4 / RNA polymerase sigma-70 region 2 / RNA polymerase sigma-70 like domain / Sigma-70 region 2 / RNA polymerase sigma factor, region 2 / RNA polymerase sigma factor, region 3/4-like / Glutathione S-transferase, N-terminal domain / Glutathione transferase family / Glutathione S-transferase, C-terminal / Glutathione S-transferase, C-terminal-like / Soluble glutathione S-transferase C-terminal domain profile. / Soluble glutathione S-transferase N-terminal domain profile. / Glutathione S-transferase, N-terminal / DNA-directed RNA polymerase, omega subunit / Glutathione S-transferase, C-terminal domain superfamily / DNA-directed RNA polymerase, subunit beta-prime, bacterial type / DNA-directed RNA polymerase, beta subunit, external 1 domain superfamily / DNA-directed RNA polymerase, beta subunit, external 1 domain / RNA polymerase beta subunit external 1 domain / RNA polymerase, alpha subunit, C-terminal / Bacterial RNA polymerase, alpha chain C terminal domain / DNA-directed RNA polymerase, alpha subunit / DNA-directed RNA polymerase beta subunit, bacterial-type / RNA polymerase Rpb6 / RNA polymerase, subunit omega/Rpo6/RPB6 / RNA polymerase Rpb6 / RNA polymerase Rpb1, domain 3 superfamily / RPB6/omega subunit-like superfamily / RNA polymerase Rpb1, clamp domain superfamily / RNA polymerase Rpb2, domain 2 superfamily / RNA polymerase Rpb1, domain 3 / RNA polymerase Rpb1, domain 3 / DNA-directed RNA polymerase, subunit beta-prime / RNA polymerase Rpb1, domain 1 / RNA polymerase Rpb1, domain 1 / RNA polymerase, alpha subunit / RNA polymerase Rpb1, domain 5 / RNA polymerase Rpb1, domain 4 / RNA polymerase Rpb1, domain 2 / RNA polymerase Rpb1, domain 5 / RNA polymerase Rpb1, domain 4 / RNA polymerase, beta subunit, protrusion / RNA polymerase beta subunit / RNA polymerase, N-terminal / RNA polymerase Rpb1, funnel domain superfamily / RNA polymerase I subunit A N-terminus / DNA-directed RNA polymerase, insert domain / DNA-directed RNA polymerase, RpoA/D/Rpb3-type / RNA polymerase Rpb3/RpoA insert domain / RNA polymerase Rpb3/Rpb11 dimerisation domain / RNA polymerases D / DNA-directed RNA polymerase, insert domain superfamily / RNA polymerase, RBP11-like subunit / RNA polymerase Rpb2, domain 2 / RNA polymerase Rpb2, domain 2 / RNA polymerase, beta subunit, conserved site / RNA polymerase Rpb2, domain 7 / RNA polymerase Rpb2, domain 3 / RNA polymerase Rpb2, OB-fold / RNA polymerase Rpb2, domain 7 / RNA polymerase Rpb2, domain 3 / RNA polymerases beta chain signature. / DNA-directed RNA polymerase, subunit 2, hybrid-binding domain / DNA-directed RNA polymerase, subunit 2 / DNA-directed RNA polymerase, subunit 2, hybrid-binding domain superfamily / RNA polymerase Rpb2, domain 6 / Thioredoxin-like superfamily / Winged helix-like DNA-binding domain superfamily
Similarity search - Domain/homology
DNA / DNA (> 10) / DNA-directed RNA polymerase subunit alpha / Stringent starvation protein A / DNA-directed RNA polymerase subunit beta' / RNA polymerase sigma factor RpoD / DNA-directed RNA polymerase subunit alpha / DNA-directed RNA polymerase subunit omega / DNA-directed RNA polymerase subunit beta' / DNA-directed RNA polymerase subunit beta ...DNA / DNA (> 10) / DNA-directed RNA polymerase subunit alpha / Stringent starvation protein A / DNA-directed RNA polymerase subunit beta' / RNA polymerase sigma factor RpoD / DNA-directed RNA polymerase subunit alpha / DNA-directed RNA polymerase subunit omega / DNA-directed RNA polymerase subunit beta' / DNA-directed RNA polymerase subunit beta / Stringent starvation protein A / RNA polymerase sigma factor RpoD / DNA-directed RNA polymerase subunit omega
Similarity search - Component
Biological speciesEscherichia coli (E. coli)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.68 Å
AuthorsLin, W. / Feng, Y.
CitationJournal: Nucleic Acids Res / Year: 2020
Title: Structural basis for transcription inhibition by E. coli SspA.
Authors: Fulin Wang / Jing Shi / Dingwei He / Bei Tong / Chao Zhang / Aijia Wen / Yu Zhang / Yu Feng / Wei Lin /
Abstract: Stringent starvation protein A (SspA) is an RNA polymerase (RNAP)-associated protein involved in nucleotide metabolism, acid tolerance and virulence of bacteria. Despite extensive biochemical and ...Stringent starvation protein A (SspA) is an RNA polymerase (RNAP)-associated protein involved in nucleotide metabolism, acid tolerance and virulence of bacteria. Despite extensive biochemical and genetic analyses, the precise regulatory role of SspA in transcription is still unknown, in part, because of a lack of structural information for bacterial RNAP in complex with SspA. Here, we report a 3.68 Å cryo-EM structure of an Escherichia coli RNAP-promoter open complex (RPo) with SspA. Unexpectedly, the structure reveals that SspA binds to the E. coli σ70-RNAP holoenzyme as a homodimer, interacting with σ70 region 4 and the zinc binding domain of EcoRNAP β' subunit simultaneously. Results from fluorescent polarization assays indicate the specific interactions between SspA and σ70 region 4 confer its σ selectivity, thereby avoiding its interactions with σs or other alternative σ factors. In addition, results from in vitro transcription assays verify that SspA inhibits transcription probably through suppressing promoter escape. Together, the results here provide a foundation for understanding the unique physiological function of SspA in transcription regulation in bacteria.
History
DepositionJun 5, 2020Deposition site: PDBJ / Processing site: PDBJ
Revision 1.0Aug 12, 2020Provider: repository / Type: Initial release
Revision 1.1Aug 26, 2020Group: Source and taxonomy / Category: entity_src_gen / Item: _entity_src_gen.pdbx_gene_src_ncbi_taxonomy_id
Revision 1.2Mar 27, 2024Group: Data collection / Database references / Category: chem_comp_atom / chem_comp_bond / database_2
Item: _database_2.pdbx_DOI / _database_2.pdbx_database_accession

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-30307
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
H: DNA (63-mer)
I: Stringent starvation protein A
J: Stringent starvation protein A
K: DNA-directed RNA polymerase subunit alpha
A: DNA-directed RNA polymerase subunit alpha
B: DNA-directed RNA polymerase subunit alpha
C: DNA-directed RNA polymerase subunit beta
D: DNA-directed RNA polymerase subunit beta'
E: DNA-directed RNA polymerase subunit omega
F: RNA polymerase sigma factor RpoD
G: DNA (63-mer)
hetero molecules


Theoretical massNumber of molelcules
Total (without water)584,10114
Polymers583,94611
Non-polymers1553
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: gel filtration
TypeNameSymmetry operationNumber
identity operation1_5551
Buried area54060 Å2
ΔGint-296 kcal/mol
Surface area201980 Å2

-
Components

-
DNA chain , 2 types, 2 molecules HG

#1: DNA chain DNA (63-mer)


Mass: 19671.666 Da / Num. of mol.: 1 / Source method: obtained synthetically
Details: Nontemplate strand DNA of transcription initiation scaffold(RPo)
Source: (synth.) Escherichia coli (E. coli)
#8: DNA chain DNA (63-mer)


Mass: 19159.285 Da / Num. of mol.: 1 / Source method: obtained synthetically
Details: Template strand DNA of transcription initiation scaffold(RPo)
Source: (synth.) Escherichia coli (E. coli)

-
Protein , 2 types, 3 molecules IJF

#2: Protein Stringent starvation protein A


Mass: 24332.885 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Escherichia coli (E. coli) / Gene: sspA / Production host: Escherichia coli BL21(DE3) (bacteria) / Strain (production host): BL21(DE3)
References: UniProt: H4IXP2, UniProt: P0ACA3*PLUS, glutathione transferase
#7: Protein RNA polymerase sigma factor RpoD / Sigma-70


Mass: 70352.242 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Escherichia coli (E. coli) / Gene: rpoD / Production host: Escherichia coli BL21(DE3) (bacteria) / Strain (production host): BL21(DE3) / References: UniProt: Q0P6L9, UniProt: P00579*PLUS

-
DNA-directed RNA polymerase subunit ... , 4 types, 6 molecules KABCDE

#3: Protein DNA-directed RNA polymerase subunit alpha / RNAP subunit alpha / RNA polymerase subunit alpha / Transcriptase subunit alpha


Mass: 36558.680 Da / Num. of mol.: 3
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Escherichia coli (E. coli) / Gene: rpoA, ECPG_02615 / Production host: Escherichia coli BL21(DE3) (bacteria) / Strain (production host): BL21(DE3)
References: UniProt: F4VJT6, UniProt: P0A7Z4*PLUS, DNA-directed RNA polymerase
#4: Protein DNA-directed RNA polymerase subunit beta / RNAP subunit beta / RNA polymerase subunit beta / Transcriptase subunit beta


Mass: 150804.922 Da / Num. of mol.: 1 / Mutation: D516V
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Escherichia coli (strain K12) (bacteria)
Strain: K12
Gene: rpoB, groN, nitB, rif, ron, stl, stv, tabD, b3987, JW3950
Production host: Escherichia coli BL21(DE3) (bacteria) / Strain (production host): BL21(DE3) / References: UniProt: P0A8V2, DNA-directed RNA polymerase
#5: Protein DNA-directed RNA polymerase subunit beta' / RNAP subunit beta' / RNA polymerase subunit beta' / Transcriptase subunit beta'


Mass: 155366.781 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Escherichia coli (E. coli) / Gene: rpoC / Production host: Escherichia coli BL21(DE3) (bacteria) / Strain (production host): BL21(DE3)
References: UniProt: M9GTE2, UniProt: P0A8T7*PLUS, DNA-directed RNA polymerase
#6: Protein DNA-directed RNA polymerase subunit omega / RNAP omega subunit / RNA polymerase omega subunit / Transcriptase subunit omega


Mass: 10249.547 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Escherichia coli (E. coli) / Gene: rpoZ / Production host: Escherichia coli BL21(DE3) (bacteria) / Strain (production host): BL21(DE3)
References: UniProt: T9C803, UniProt: P0A800*PLUS, DNA-directed RNA polymerase

-
Non-polymers , 2 types, 3 molecules

#9: Chemical ChemComp-MG / MAGNESIUM ION


Mass: 24.305 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: Mg / Feature type: SUBJECT OF INVESTIGATION
#10: Chemical ChemComp-ZN / ZINC ION


Mass: 65.409 Da / Num. of mol.: 2 / Source method: obtained synthetically / Formula: Zn / Feature type: SUBJECT OF INVESTIGATION

-
Details

Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Escherichia coli RNAP-promoter open complex (RPo) with stringent starvation protein A(SspA)
Type: COMPLEX / Entity ID: #1-#8 / Source: RECOMBINANT
Molecular weightValue: 0.55 MDa / Experimental value: NO
Source (natural)Organism: Escherichia coli (E. coli)
Source (recombinant)Organism: Escherichia coli BL21(DE3) (bacteria) / Strain: BL21(DE3)
Buffer solutionpH: 7.9
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD
Image recordingElectron dose: 59 e/Å2 / Detector mode: COUNTING / Film or detector model: GATAN K2 SUMMIT (4k x 4k)

-
Processing

EM software
IDNameVersionCategory
12RELION3classification
13RELION33D reconstruction
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
SymmetryPoint symmetry: C1 (asymmetric)
3D reconstructionResolution: 3.68 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 60145 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more