snoRNA release from pre-rRNA / exonucleolytic trimming to generate mature 5'-end of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / endonucleolytic cleavage in ITS1 upstream of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / PeBoW complex / rRNA primary transcript binding / ATP-dependent activity, acting on RNA / maturation of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / regulation of polysaccharide biosynthetic process / preribosome, small subunit precursor / maturation of 5.8S rRNA ...snoRNA release from pre-rRNA / exonucleolytic trimming to generate mature 5'-end of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / endonucleolytic cleavage in ITS1 upstream of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / PeBoW complex / rRNA primary transcript binding / ATP-dependent activity, acting on RNA / maturation of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / regulation of polysaccharide biosynthetic process / preribosome, small subunit precursor / maturation of 5.8S rRNA / transporter complex / cleavage in ITS2 between 5.8S rRNA and LSU-rRNA of tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / proteasome binding / Major pathway of rRNA processing in the nucleolus and cytosol / lipopolysaccharide transport / SRP-dependent cotranslational protein targeting to membrane / GTP hydrolysis and joining of the 60S ribosomal subunit / ribosomal large subunit binding / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) / Formation of a pool of free 40S subunits / preribosome, large subunit precursor / L13a-mediated translational silencing of Ceruloplasmin expression / Gram-negative-bacterium-type cell outer membrane assembly / ribosomal large subunit export from nucleus / 90S preribosome / ribonucleoprotein complex binding / protein-RNA complex assembly / maturation of LSU-rRNA / proteasome complex / maturation of LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / ribosomal large subunit biogenesis / maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / maturation of SSU-rRNA / macroautophagy / small-subunit processome / protein catabolic process / cell outer membrane / rRNA processing / nuclear envelope / ribosome biogenesis / ribosomal small subunit biogenesis / 5S rRNA binding / ribosomal large subunit assembly / large ribosomal subunit rRNA binding / protein-macromolecule adaptor activity / cytosolic large ribosomal subunit / cytoplasmic translation / RNA helicase activity / negative regulation of translation / rRNA binding / RNA helicase / structural constituent of ribosome / ribosome / mRNA binding / nucleolus / ATP hydrolysis activity / DNA binding / RNA binding / zinc ion binding / nucleoplasm / ATP binding / identical protein binding / nucleus / cytosol / cytoplasm 類似検索 - 分子機能
WDR74/Nsa1 / Ribosomal RNA processing protein 1-like / Nucleolar protein,Nop52 / Mak16 protein / Mak16 protein C-terminal region / Ribosome biogenesis protein 15, RNA recognition motif / Ribosome biogenesis protein BRX1 / DDX18/Has1, DEAD-box helicase domain / Ribosome biogenesis protein Nop16 / Ribosome biogenesis protein Nop16 ...WDR74/Nsa1 / Ribosomal RNA processing protein 1-like / Nucleolar protein,Nop52 / Mak16 protein / Mak16 protein C-terminal region / Ribosome biogenesis protein 15, RNA recognition motif / Ribosome biogenesis protein BRX1 / DDX18/Has1, DEAD-box helicase domain / Ribosome biogenesis protein Nop16 / Ribosome biogenesis protein Nop16 / Domain of unknown function DUF4217 / ATP-dependent rRNA helicase SPB4-like, C-terminal extension / DUF4217 / BOP1, N-terminal domain / WD repeat BOP1/Erb1 / BOP1NT (NUC169) domain / BOP1NT (NUC169) domain / U3 snoRNP protein/Ribosome production factor 1 / Pescadillo / Pescadillo N-terminus / BRCT domain / Brix domain / Brix domain / Brix domain profile. / Brix / DEAD-box subfamily ATP-dependent helicases signature. / ATP-dependent RNA helicase DEAD-box, conserved site / RNA helicase, DEAD-box type, Q motif / LptD, C-terminal / LPS-assembly protein LptD / : / LPS transport system D / Organic solvent tolerance-like, N-terminal / LptA/(LptD N-terminal domain) LPS transport protein / DEAD-box RNA helicase Q motif profile. / Group II dsDNA virus coat/capsid protein / Ribosomal L28e/Mak16 / Ribosomal L28e protein family / breast cancer carboxy-terminal domain / Ribosomal protein L27e, conserved site / Ribosomal protein L27e signature. / Ribosomal protein L38e / Ribosomal protein L38e superfamily / Ribosomal L38e protein family / : / 60S ribosomal protein L18a/ L20, eukaryotes / BRCT domain profile. / Ribosomal protein L6e signature. / BRCT domain / Ribosomal protein L34e, conserved site / Ribosomal protein L34e signature. / 50S ribosomal protein L18Ae/60S ribosomal protein L20 and L18a / Ribosomal protein 50S-L18Ae/60S-L20/60S-L18A / Ribosomal proteins 50S-L18Ae/60S-L20/60S-L18A / Ribosomal protein 60S L18 and 50S L18e / Ribosomal protein L18/L18-A/B/e, conserved site / Ribosomal protein L18e signature. / Ribosomal protein L23/L25, N-terminal / Ribosomal protein L23, N-terminal domain / Eukaryotic Ribosomal Protein L27, KOW domain / BRCT domain superfamily / Ribosomal Protein L6, KOW domain / Ribosomal protein L36e signature. / Ribosomal protein L35Ae, conserved site / Ribosomal protein L35Ae signature. / Ribosomal protein L27e / Ribosomal protein L27e superfamily / Ribosomal L27e protein family / : / Ribosomal protein L1-like / Ribosomal protein L1/ribosomal biogenesis protein / Ribosomal protein L1p/L10e family / Ribosomal protein L13, eukaryotic/archaeal / Ribosomal protein L6e / Ribosomal protein L34Ae / Ribosomal protein L34e / Ribosomal protein L7A/L8 / 60S ribosomal protein L6E / 60S ribosomal protein L35 / Ribosomal protein L18e / 60S ribosomal protein L4, C-terminal domain / 60S ribosomal protein L4 C-terminal domain / Ribosomal protein L7, eukaryotic / Ribosomal protein L30, N-terminal / Ribosomal L30 N-terminal domain / Ribosomal protein L36e / Ribosomal protein L36e domain superfamily / Ribosomal protein L36e / Ribosomal protein L14e domain / Ribosomal protein L14 / Ribosomal protein L35A / Ribosomal protein L35Ae / Ribosomal protein L35A superfamily / Ribosomal protein L32e, conserved site / Ribosomal protein L32e signature. / Ribosomal protein L14 / Ribosomal protein L4/L1e, eukaryotic/archaeal, conserved site / Ribosomal protein L1e signature. / Ribosomal protein L15e, conserved site / Ribosomal protein L15e signature. 類似検索 - ドメイン・相同性
: / : / : / : / : / : / : / : / : / : ...: / : / : / : / : / : / : / : / : / : / : / : / : / : / : / : / Ribosome biogenesis protein ERB1 / Large ribosomal subunit protein uL23 / Large ribosomal subunit protein uL30A / Large ribosomal subunit protein uL22A / Large ribosomal subunit protein uL24A / Large ribosomal subunit protein eL33A / Large ribosomal subunit protein eL36A / Large ribosomal subunit protein eL15A / Large ribosomal subunit protein eL27A / Large ribosomal subunit protein eL20A / Large ribosomal subunit protein eL18A / Large ribosomal subunit protein uL29A / Large ribosomal subunit protein uL4A / Protein MAK16 / Putative major capsid protein p72 / Large ribosomal subunit protein eL8A / Large ribosomal subunit protein uL13A / Ribosomal RNA-processing protein 1 / Large ribosomal subunit protein eL14A / Large ribosomal subunit protein eL32 / Proteasome-interacting protein CIC1 / Ribosome production factor 1 / Nucleolar protein 16 / Ribosome biogenesis protein RLP7 / Large ribosomal subunit protein eL37A / Large ribosomal subunit protein eL38 / Ribosome biogenesis protein NSA1 / Pescadillo homolog / Ribosome biogenesis protein 15 / Large ribosomal subunit protein eL34A / Large ribosomal subunit protein eL6A / ATP-dependent RNA helicase HAS1 / Ribosome biogenesis protein ERB1 / Ribosome biogenesis protein BRX1 / LPS-assembly protein LptD 類似検索 - 構成要素
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)
1DP2GM123459
米国
Swiss National Science Foundation
155515
スイス
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)
GM115327-Tan
米国
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)
P41GM103314
米国
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)
P41GM109824
米国
引用
ジャーナル: Nature / 年: 2018 タイトル: Modular assembly of the nucleolar pre-60S ribosomal subunit. 著者: Zahra Assur Sanghai / Linamarie Miller / Kelly R Molloy / Jonas Barandun / Mirjam Hunziker / Malik Chaker-Margot / Junjie Wang / Brian T Chait / Sebastian Klinge / 要旨: Early co-transcriptional events during eukaryotic ribosome assembly result in the formation of precursors of the small (40S) and large (60S) ribosomal subunits. A multitude of transient assembly ...Early co-transcriptional events during eukaryotic ribosome assembly result in the formation of precursors of the small (40S) and large (60S) ribosomal subunits. A multitude of transient assembly factors regulate and chaperone the systematic folding of pre-ribosomal RNA subdomains. However, owing to a lack of structural information, the role of these factors during early nucleolar 60S assembly is not fully understood. Here we report cryo-electron microscopy (cryo-EM) reconstructions of the nucleolar pre-60S ribosomal subunit in different conformational states at resolutions of up to 3.4 Å. These reconstructions reveal how steric hindrance and molecular mimicry are used to prevent both premature folding states and binding of later factors. This is accomplished by the concerted activity of 21 ribosome assembly factors that stabilize and remodel pre-ribosomal RNA and ribosomal proteins. Among these factors, three Brix-domain proteins and their binding partners form a ring-like structure at ribosomal RNA (rRNA) domain boundaries to support the architecture of the maturing particle. The existence of mutually exclusive conformations of these pre-60S particles suggests that the formation of the polypeptide exit tunnel is achieved through different folding pathways during subsequent stages of ribosome assembly. These structures rationalize previous genetic and biochemical data and highlight the mechanisms that drive eukaryotic ribosome assembly in a unidirectional manner.