snRNA transcription by RNA polymerase III / RNA Polymerase III Chain Elongation / DNA/RNA hybrid binding / calcitonin gene-related peptide receptor activity / RNA Polymerase III Transcription Termination / regulation of transcription by RNA polymerase III / regulation of transcription by RNA polymerase I / DNA polymerase III complex / RPAP3/R2TP/prefoldin-like complex / RNA Polymerase III Transcription Initiation From Type 1 Promoter ...snRNA transcription by RNA polymerase III / RNA Polymerase III Chain Elongation / DNA/RNA hybrid binding / calcitonin gene-related peptide receptor activity / RNA Polymerase III Transcription Termination / regulation of transcription by RNA polymerase III / regulation of transcription by RNA polymerase I / DNA polymerase III complex / RPAP3/R2TP/prefoldin-like complex / RNA Polymerase III Transcription Initiation From Type 1 Promoter / RNA Polymerase III Transcription Initiation From Type 2 Promoter / RNA Polymerase III Transcription Initiation From Type 3 Promoter / RNA Polymerase III Abortive And Retractive Initiation / Cytosolic sensors of pathogen-associated DNA / positive regulation of innate immune response / nucleobase-containing compound metabolic process / Abortive elongation of HIV-1 transcript in the absence of Tat / FGFR2 alternative splicing / RNA Polymerase I Transcription Termination / MicroRNA (miRNA) biogenesis / Viral Messenger RNA Synthesis / Signaling by FGFR2 IIIa TM / RNA Pol II CTD phosphorylation and interaction with CE during HIV infection / RNA Pol II CTD phosphorylation and interaction with CE / HIV Transcription Initiation / RNA Polymerase II HIV Promoter Escape / Transcription of the HIV genome / RNA Polymerase II Promoter Escape / RNA Polymerase II Transcription Pre-Initiation And Promoter Opening / RNA Polymerase II Transcription Initiation / RNA Polymerase II Transcription Initiation And Promoter Clearance / Formation of the Early Elongation Complex / Formation of the HIV-1 Early Elongation Complex / mRNA Capping / transcription initiation at RNA polymerase III promoter / mRNA Splicing - Minor Pathway / PIWI-interacting RNA (piRNA) biogenesis / RNA Polymerase I Transcription Initiation / Processing of Capped Intron-Containing Pre-mRNA / transcription by RNA polymerase III / Pausing and recovery of Tat-mediated HIV elongation / Tat-mediated HIV elongation arrest and recovery / RNA polymerase II transcribes snRNA genes / HIV elongation arrest and recovery / Pausing and recovery of HIV elongation / neuropeptide signaling pathway / Tat-mediated elongation of the HIV-1 transcript / Formation of HIV-1 elongation complex containing HIV-1 Tat / RNA polymerase I complex / transcription elongation by RNA polymerase I / RNA polymerase III complex / Formation of HIV elongation complex in the absence of HIV Tat / tRNA transcription by RNA polymerase III / RNA polymerase II, core complex / transcription by RNA polymerase I / RNA Polymerase II Transcription Elongation / Formation of RNA Pol II elongation complex / RNA Polymerase II Pre-transcription Events / mRNA Splicing - Major Pathway / acrosomal vesicle / positive regulation of interferon-beta production / Inhibition of DNA recombination at telomere / TP53 Regulates Transcription of DNA Repair Genes / RNA Polymerase I Promoter Escape / Transcriptional regulation by small RNAs / protein-DNA complex / NoRC negatively regulates rRNA expression / B-WICH complex positively regulates rRNA expression / ribonucleoside binding / Transcription-Coupled Nucleotide Excision Repair (TC-NER) / Activation of anterior HOX genes in hindbrain development during early embryogenesis / Formation of TC-NER Pre-Incision Complex / fibrillar center / DNA-directed RNA polymerase / Dual incision in TC-NER / Gap-filling DNA repair synthesis and ligation in TC-NER / DNA-directed RNA polymerase activity / single-stranded DNA binding / 4 iron, 4 sulfur cluster binding / double-stranded DNA binding / defense response to virus / Estrogen-dependent gene expression / nucleic acid binding / transcription by RNA polymerase II / protein dimerization activity / protein stabilization / intracellular membrane-bounded organelle / innate immune response / nucleotide binding / chromatin binding / centrosome / DNA-templated transcription / magnesium ion binding / mitochondrion / DNA binding / zinc ion binding / nucleoplasm / membrane / nucleus / plasma membrane 類似検索 - 分子機能
DNA-directed RNA polymerase III subunit RPC1 / DNA-directed RNA polymerases I and III subunit RPAC1 / DNA-directed RNA polymerase III subunit RPC9 / DNA-directed RNA polymerase III subunit RPC4 / DNA-directed RNA polymerases I and III subunit RPAC2 / DNA-directed RNA polymerases I, II, and III subunit RPABC1 / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerases I, II, and III subunit RPABC4 / DNA-directed RNA polymerases I, II, and III subunit RPABC2 / DNA-directed RNA polymerases I, II, and III subunit RPABC5 ...DNA-directed RNA polymerase III subunit RPC1 / DNA-directed RNA polymerases I and III subunit RPAC1 / DNA-directed RNA polymerase III subunit RPC9 / DNA-directed RNA polymerase III subunit RPC4 / DNA-directed RNA polymerases I and III subunit RPAC2 / DNA-directed RNA polymerases I, II, and III subunit RPABC1 / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerases I, II, and III subunit RPABC4 / DNA-directed RNA polymerases I, II, and III subunit RPABC2 / DNA-directed RNA polymerases I, II, and III subunit RPABC5 / DNA-directed RNA polymerase III subunit RPC3 / DNA-directed RNA polymerase III subunit RPC6 / DNA-directed RNA polymerase III subunit RPC5 / DNA-directed RNA polymerase III subunit RPC2 / DNA-directed RNA polymerase III subunit RPC10 / DNA-directed RNA polymerase III subunit RPC8 類似検索 - 構成要素
ジャーナル: Nat Commun / 年: 2020 タイトル: Structure of human RNA polymerase III. 著者: Ewan Phillip Ramsay / Guillermo Abascal-Palacios / Julia L Daiß / Helen King / Jerome Gouge / Michael Pilsl / Fabienne Beuron / Edward Morris / Philip Gunkel / Christoph Engel / Alessandro Vannini / 要旨: In eukaryotes, RNA Polymerase (Pol) III is specialized for the transcription of tRNAs and other short, untranslated RNAs. Pol III is a determinant of cellular growth and lifespan across eukaryotes. ...In eukaryotes, RNA Polymerase (Pol) III is specialized for the transcription of tRNAs and other short, untranslated RNAs. Pol III is a determinant of cellular growth and lifespan across eukaryotes. Upregulation of Pol III transcription is observed in cancer and causative Pol III mutations have been described in neurodevelopmental disorders and hypersensitivity to viral infection. Here, we report a cryo-EM reconstruction at 4.0 Å of human Pol III, allowing mapping and rationalization of reported genetic mutations. Mutations causing neurodevelopmental defects cluster in hotspots affecting Pol III stability and/or biogenesis, whereas mutations affecting viral sensing are located in proximity to DNA binding regions, suggesting an impairment of Pol III cytosolic viral DNA-sensing. Integrating x-ray crystallography and SAXS, we also describe the structure of the higher eukaryote specific RPC5 C-terminal extension. Surprisingly, experiments in living cells highlight a role for this module in the assembly and stability of human Pol III.