[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleStructural and Computational Insights into the Mechanism of the Superior Pharmacological Activity of Crisugabalin: A Third-Generation Cavαδ1 Ligand.
Journal, issue, pagesJ Chem Inf Model, Vol. 66, Issue 1, Page 632-641, Year 2026
Publish dateDec 24, 2025
AuthorsZhaoqiang Chen / Xiaoli Gou / Qingyuan Meng / He Li / Yao Li / Zongjun Shi / Xinxin Li / Ju Wang /
PubMed AbstractCrisugabalin, a recently approved third-generation GABA analogue with a unique cage-like tricyclic scaffold, shows superior efficacy and safety over pregabalin and mirogabalin for treating ...Crisugabalin, a recently approved third-generation GABA analogue with a unique cage-like tricyclic scaffold, shows superior efficacy and safety over pregabalin and mirogabalin for treating neuropathic pain. Through integrated biophysical, structural, and computational approaches, we elucidate the molecular basis of its enhanced pharmacological profile. Dissociation kinetic studies revealed that crisugabalin exhibited the slowest dissociation kinetics from the αδ1 subunit (τ = 32.05, 80.00, 111.11 min for pregabalin, mirogabalin, and crisugabalin) but the fastest dissociation from the αδ2 subunit (τ = 8.70, 16.39, 5.78 min for pregabalin, mirogabalin, and crisugabalin). Cryo-EM structures demonstrated crisugabalin's superior binding affinity for αδ1 over gabapentin and l-leucine, driven by enhanced hydrogen bonding and hydrophobic contacts, alongside volumetric expansion of the l-leucine binding pocket. Molecular dynamics (MD) simulations identified significantly more persistent hydrogen bonding by crisugabalin (66.3% average occupancy) relative to pregabalin (28.3%). Random Acceleration Molecular Dynamics (RAMD) simulations revealed that ligand dissociation primarily proceeds via Pathway A (along the β2, β3, and β1 segments), and τRAMD calculations correctly ranked the ligand residence times, yielding values of 0.18 ns for pregabalin and 2.88 ns for crisugabalin. Furthermore, the binding free energies for pregabalin, mirogabalin, and crisugabalin were -21.64, -31.30, and -34.99 kcal/mol, calculated by MM/GBSA. The decomposition of the binding free energy components revealed that crisugabalin exhibits a dual-action mechanism characterized by enhanced hydrophobic interactions (-28.46 kcal/mol) and favorable entropic contributions (3.03 kcal/mol). This unique binding behavior stems from its cage-like tricyclic scaffold, an unprecedented substructure in drug molecules. These findings establish the cage-like tricyclic motif as a novel pharmacophore that simultaneously optimizes binding entropy and enthalpy, providing a blueprint for next-generation voltage-gated calcium channel modulators. MD, τRAMD, and MM-GBSA used in this study are powerful computational tools for rational drug design, particularly for optimizing compounds with prolonged target residence times.
External linksJ Chem Inf Model / PubMed:41439594 / PubMed Central
MethodsEM (single particle)
Resolution3.01 Å
Structure data

EMDB-65160, PDB-9vlg:
Structure of human alpha-2/delta-1 with crisugabalin
Method: EM (single particle) / Resolution: 3.01 Å

Chemicals

ChemComp-NAG:
2-acetamido-2-deoxy-beta-D-glucopyranose

PDB-1esq:
CRYSTAL STRUCTURE OF THIAZOLE KINASE MUTANT (C198S) WITH ATP AND THIAZOLE PHOSPHATE.

Source
  • homo sapiens (human)
KeywordsMEMBRANE PROTEIN / Complex / Alpha-2/delta-1 / Crisugabalin

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more