[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleStructures of monomeric and dimeric PRC2:EZH1 reveal flexible modules involved in chromatin compaction.
Journal, issue, pagesNat Commun, Vol. 12, Issue 1, Page 714, Year 2021
Publish dateJan 29, 2021
AuthorsDaniel Grau / Yixiao Zhang / Chul-Hwan Lee / Marco Valencia-Sánchez / Jenny Zhang / Miao Wang / Marlene Holder / Vladimir Svetlov / Dongyan Tan / Evgeny Nudler / Danny Reinberg / Thomas Walz / Karim-Jean Armache /
PubMed AbstractPolycomb repressive complex 2 (PRC2) is a histone methyltransferase critical for maintaining gene silencing during eukaryotic development. In mammals, PRC2 activity is regulated in part by the ...Polycomb repressive complex 2 (PRC2) is a histone methyltransferase critical for maintaining gene silencing during eukaryotic development. In mammals, PRC2 activity is regulated in part by the selective incorporation of one of two paralogs of the catalytic subunit, EZH1 or EZH2. Each of these enzymes has specialized biological functions that may be partially explained by differences in the multivalent interactions they mediate with chromatin. Here, we present two cryo-EM structures of PRC2:EZH1, one as a monomer and a second one as a dimer bound to a nucleosome. When bound to nucleosome substrate, the PRC2:EZH1 dimer undergoes a dramatic conformational change. We demonstrate that mutation of a divergent EZH1/2 loop abrogates the nucleosome-binding and methyltransferase activities of PRC2:EZH1. Finally, we show that PRC2:EZH1 dimers are more effective than monomers at promoting chromatin compaction, and the divergent EZH1/2 loop is essential for this function, thereby tying together the methyltransferase, nucleosome-binding, and chromatin-compaction activities of PRC2:EZH1. We speculate that the conformational flexibility and the ability to dimerize enable PRC2 to act on the varied chromatin substrates it encounters in the cell.
External linksNat Commun / PubMed:33514705 / PubMed Central
MethodsEM (single particle)
Resolution3.3 - 4.8 Å
Structure data

EMDB-23021, PDB-7kso:
Cryo-EM structure of PRC2:EZH1-AEBP2-JARID2
Method: EM (single particle) / Resolution: 3.9 Å

EMDB-23022:
Cryo-EM map of PRC2:EZH1-AEBP2
Method: EM (single particle) / Resolution: 4.1 Å

EMDB-23024, PDB-7ksr:
PRC2:EZH1_A from a dimeric PRC2 bound to a nucleosome
Method: EM (single particle) / Resolution: 4.1 Å

EMDB-23025, PDB-7ktp:
PRC2:EZH1_B from a dimeric PRC2 bound to a nucleosome
Method: EM (single particle) / Resolution: 4.8 Å

EMDB-23026, PDB-7ktq:
Nucleosome from a dimeric PRC2 bound to a nucleosome
Method: EM (single particle) / Resolution: 3.3 Å

EMDB-23103:
PRC2:EZH1 dimer bound to a nucleosome (composite map)
Method: EM (single particle) / Resolution: 4.8 Å

Chemicals

ChemComp-ZN:
Unknown entry

Source
  • homo sapiens (human)
  • xenopus laevis (African clawed frog)
KeywordsGENE REGULATION/Transferase / Chromatin / methyltransferase / nucleosome-modifying complex / GENE REGULATION / GENE REGULATION-Transferase complex / GENE REGULATION/DNA / GENE REGULATION-DNA complex

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more