[English] 日本語
Yorodumi
- EMDB-43279: Cryo-EM structure of short form insulin receptor (IR-A) with four... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-43279
TitleCryo-EM structure of short form insulin receptor (IR-A) with four IGF2 bound, symmetric conformation.
Map dataCryo-EM structure of short form insulin receptor (IR-A) with four IGF2 bound, symmetric conformation.
Sample
  • Complex: Short form insulin receptor (IR-A) with four IGF2 bound, symmetric conformation.
    • Protein or peptide: Isoform Short of Insulin receptor
    • Protein or peptide: Insulin-like growth factor II
KeywordsInsulin receptor / IGF2 / RTK / SIGNALING PROTEIN
Function / homology
Function and homology information


negative regulation of muscle cell differentiation / positive regulation of skeletal muscle tissue growth / embryonic placenta morphogenesis / regulation of muscle cell differentiation / Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) / IRS-related events triggered by IGF1R / genomic imprinting / regulation of female gonad development / positive regulation of organ growth / positive regulation of meiotic cell cycle ...negative regulation of muscle cell differentiation / positive regulation of skeletal muscle tissue growth / embryonic placenta morphogenesis / regulation of muscle cell differentiation / Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) / IRS-related events triggered by IGF1R / genomic imprinting / regulation of female gonad development / positive regulation of organ growth / positive regulation of meiotic cell cycle / transmembrane receptor protein tyrosine kinase activator activity / insulin-like growth factor II binding / positive regulation of developmental growth / male sex determination / insulin receptor complex / exocrine pancreas development / insulin-like growth factor I binding / positive regulation of multicellular organism growth / positive regulation of protein-containing complex disassembly / dendritic spine maintenance / cargo receptor activity / positive regulation of vascular endothelial cell proliferation / insulin binding / PTB domain binding / adrenal gland development / neuronal cell body membrane / Signaling by Insulin receptor / IRS activation / positive regulation of activated T cell proliferation / positive regulation of respiratory burst / amyloid-beta clearance / regulation of embryonic development / positive regulation of cell division / positive regulation of receptor internalization / protein kinase activator activity / insulin receptor substrate binding / epidermis development / embryonic placenta development / positive regulation of glycogen biosynthetic process / Signal attenuation / phosphatidylinositol 3-kinase binding / SHC-related events triggered by IGF1R / transport across blood-brain barrier / positive regulation of insulin receptor signaling pathway / heart morphogenesis / activation of protein kinase B activity / dendrite membrane / Insulin receptor recycling / insulin-like growth factor receptor binding / striated muscle cell differentiation / neuron projection maintenance / receptor-mediated endocytosis / positive regulation of mitotic nuclear division / Insulin receptor signalling cascade / positive regulation of MAP kinase activity / insulin-like growth factor receptor signaling pathway / protein serine/threonine kinase activator activity / platelet alpha granule lumen / positive regulation of glycolytic process / learning / animal organ morphogenesis / positive regulation of D-glucose import / insulin receptor binding / growth factor activity / placental growth factor receptor activity / insulin receptor activity / vascular endothelial growth factor receptor activity / hepatocyte growth factor receptor activity / macrophage colony-stimulating factor receptor activity / platelet-derived growth factor alpha-receptor activity / platelet-derived growth factor beta-receptor activity / stem cell factor receptor activity / boss receptor activity / protein tyrosine kinase collagen receptor activity / brain-derived neurotrophic factor receptor activity / transmembrane-ephrin receptor activity / GPI-linked ephrin receptor activity / epidermal growth factor receptor activity / fibroblast growth factor receptor activity / insulin-like growth factor receptor activity / receptor protein-tyrosine kinase / peptidyl-tyrosine phosphorylation / hormone activity / caveola / receptor internalization / memory / cell surface receptor protein tyrosine kinase signaling pathway / cellular response to insulin stimulus / glucose metabolic process / Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs) / male gonad development / osteoblast differentiation / positive regulation of nitric oxide biosynthetic process / integrin binding / late endosome / insulin receptor signaling pathway / glucose homeostasis / Platelet degranulation / amyloid-beta binding / PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling
Similarity search - Function
Insulin-like growth factor II E-peptide, C-terminal / Insulin-like growth factor II / Insulin-like growth factor II E-peptide / Insulin-like growth factor / Insulin receptor, trans-membrane domain / Insulin receptor trans-membrane segment / Tyrosine-protein kinase, insulin-like receptor / Tyrosine-protein kinase, receptor class II, conserved site / Receptor tyrosine kinase class II signature. / Insulin family ...Insulin-like growth factor II E-peptide, C-terminal / Insulin-like growth factor II / Insulin-like growth factor II E-peptide / Insulin-like growth factor / Insulin receptor, trans-membrane domain / Insulin receptor trans-membrane segment / Tyrosine-protein kinase, insulin-like receptor / Tyrosine-protein kinase, receptor class II, conserved site / Receptor tyrosine kinase class II signature. / Insulin family / Insulin-like / Insulin/IGF/Relaxin family / Insulin / insulin-like growth factor / relaxin family. / Insulin, conserved site / Insulin family signature. / Insulin-like superfamily / Receptor L-domain / Furin-like cysteine-rich domain / Receptor L-domain superfamily / Furin-like cysteine rich region / Receptor L domain / Furin-like repeat / Furin-like repeats / Growth factor receptor cysteine-rich domain superfamily / Fibronectin type III domain / : / Fibronectin type 3 domain / Fibronectin type-III domain profile. / Fibronectin type III / Fibronectin type III superfamily / Tyrosine-protein kinase, catalytic domain / Tyrosine kinase, catalytic domain / Tyrosine protein kinases specific active-site signature. / Tyrosine-protein kinase, active site / Serine-threonine/tyrosine-protein kinase, catalytic domain / Protein tyrosine and serine/threonine kinase / Protein kinase, ATP binding site / Protein kinases ATP-binding region signature. / Immunoglobulin-like fold / Protein kinase domain profile. / Protein kinase domain / Protein kinase-like domain superfamily
Similarity search - Domain/homology
Insulin-like growth factor 2 / Insulin receptor
Similarity search - Component
Biological speciesHomo sapiens (human)
Methodsingle particle reconstruction / cryo EM / Resolution: 3.6 Å
AuthorsAn W / Hall C / Li J / Huang A / Wu J / Park J / Bai XC / Choi E
Funding support United States, 1 items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)GM136976 United States
CitationJournal: Nat Commun / Year: 2024
Title: Activation of the insulin receptor by insulin-like growth factor 2.
Authors: Weidong An / Catherine Hall / Jie Li / Albert Hung / Jiayi Wu / Junhee Park / Liwei Wang / Xiao-Chen Bai / Eunhee Choi /
Abstract: Insulin receptor (IR) controls growth and metabolism. Insulin-like growth factor 2 (IGF2) has different binding properties on two IR isoforms, mimicking insulin's function. However, the molecular ...Insulin receptor (IR) controls growth and metabolism. Insulin-like growth factor 2 (IGF2) has different binding properties on two IR isoforms, mimicking insulin's function. However, the molecular mechanism underlying IGF2-induced IR activation remains unclear. Here, we present cryo-EM structures of full-length human long isoform IR (IR-B) in both the inactive and IGF2-bound active states, and short isoform IR (IR-A) in the IGF2-bound active state. Under saturated IGF2 concentrations, both the IR-A and IR-B adopt predominantly asymmetric conformations with two or three IGF2s bound at site-1 and site-2, which differs from that insulin saturated IR forms an exclusively T-shaped symmetric conformation. IGF2 exhibits a relatively weak binding to IR site-2 compared to insulin, making it less potent in promoting full IR activation. Cell-based experiments validated the functional importance of IGF2 binding to two distinct binding sites in optimal IR signaling and trafficking. In the inactive state, the C-terminus of α-CT of IR-B contacts FnIII-2 domain of the same protomer, hindering its threading into the C-loop of IGF2, thus reducing the association rate of IGF2 with IR-B. Collectively, our studies demonstrate the activation mechanism of IR by IGF2 and reveal the molecular basis underlying the different affinity of IGF2 to IR-A and IR-B.
History
DepositionJan 6, 2024-
Header (metadata) releaseMar 27, 2024-
Map releaseMar 27, 2024-
UpdateNov 13, 2024-
Current statusNov 13, 2024Processing site: RCSB / Status: Released

-
Structure visualization

Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_43279.map.gz / Format: CCP4 / Size: 75.1 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
AnnotationCryo-EM structure of short form insulin receptor (IR-A) with four IGF2 bound, symmetric conformation.
Projections & slices

Image control

Size
Brightness
Contrast
Others
AxesZ (Sec.)Y (Row.)X (Col.)
1.08 Å/pix.
x 270 pix.
= 291.6 Å
1.08 Å/pix.
x 270 pix.
= 291.6 Å
1.08 Å/pix.
x 270 pix.
= 291.6 Å

Surface

Projections

Slices (1/3)

Slices (1/2)

Slices (2/3)

Images are generated by Spider.

Voxel sizeX=Y=Z: 1.08 Å
Density
Contour LevelBy AUTHOR: 0.006
Minimum - Maximum-0.021672063 - 0.039400537
Average (Standard dev.)0.0000016269604 (±0.001181192)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions270270270
Spacing270270270
CellA=B=C: 291.6 Å
α=β=γ: 90.0 °

-
Supplemental data

-
Half map: Cryo-EM structure of short form insulin receptor (IR-A)...

Fileemd_43279_half_map_1.map
AnnotationCryo-EM structure of short form insulin receptor (IR-A) with four IGF2 bound, symmetric conformation. Half map 1.
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Half map: Cryo-EM structure of short form insulin receptor (IR-A)...

Fileemd_43279_half_map_2.map
AnnotationCryo-EM structure of short form insulin receptor (IR-A) with four IGF2 bound, symmetric conformation. Half map 2.
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Sample components

-
Entire : Short form insulin receptor (IR-A) with four IGF2 bound, symmetri...

EntireName: Short form insulin receptor (IR-A) with four IGF2 bound, symmetric conformation.
Components
  • Complex: Short form insulin receptor (IR-A) with four IGF2 bound, symmetric conformation.
    • Protein or peptide: Isoform Short of Insulin receptor
    • Protein or peptide: Insulin-like growth factor II

-
Supramolecule #1: Short form insulin receptor (IR-A) with four IGF2 bound, symmetri...

SupramoleculeName: Short form insulin receptor (IR-A) with four IGF2 bound, symmetric conformation.
type: complex / ID: 1 / Parent: 0 / Macromolecule list: all
Source (natural)Organism: Homo sapiens (human)

-
Macromolecule #1: Isoform Short of Insulin receptor

MacromoleculeName: Isoform Short of Insulin receptor / type: protein_or_peptide / ID: 1 / Number of copies: 2 / Enantiomer: LEVO / EC number: receptor protein-tyrosine kinase
Source (natural)Organism: Homo sapiens (human)
Molecular weightTheoretical: 155.329094 KDa
Recombinant expressionOrganism: Homo sapiens (human)
SequenceString: MATGGRRGAA AAPLLVAVAA LLLGAAGHLY PGEVCPGMDI RNNLTRLHEL ENCSVIEGHL QILLMFKTRP EDFRDLSFPK LIMITDYLL LFRVYGLESL KDLFPNLTVI RGSRLFFNYA LVIFEMVHLK ELGLYNLMNI TRGSVRIEKN NELCYLATID W SRILDSVE ...String:
MATGGRRGAA AAPLLVAVAA LLLGAAGHLY PGEVCPGMDI RNNLTRLHEL ENCSVIEGHL QILLMFKTRP EDFRDLSFPK LIMITDYLL LFRVYGLESL KDLFPNLTVI RGSRLFFNYA LVIFEMVHLK ELGLYNLMNI TRGSVRIEKN NELCYLATID W SRILDSVE DNYIVLNKDD NEECGDICPG TAKGKTNCPA TVINGQFVER CWTHSHCQKV CPTICKSHGC TAEGLCCHSE CL GNCSQPD DPTKCVACRN FYLDGRCVET CPPPYYHFQD WRCVNFSFCQ DLHHKCKNSR RQGCHQYVIH NNKCIPECPS GYT MNSSNL LCTPCLGPCP KVCHLLEGEK TIDSVTSAQE LRGCTVINGS LIINIRGGNN LAAELEANLG LIEEISGYLK IRRS YALVS LSFFRKLRLI RGETLEIGNY SFYALDNQNL RQLWDWSKHN LTITQGKLFF HYNPKLCLSE IHKMEEVSGT KGRQE RNDI ALKTNGDQAS CENELLKFSY IRTSFDKILL RWEPYWPPDF RDLLGFMLFY KEAPYQNVTE FDGQDACGSN SWTVVD IDP PLRSNDPKSQ NHPGWLMRGL KPWTQYAIFV KTLVTFSDER RTYGAKSDII YVQTDATNPS VPLDPISVSN SSSQIIL KW KPPSDPNGNI THYLVFWERQ AEDSELFELD YCLKGLKLPS RTWSPPFESE DSQKHNQSEY EDSAGECCSC PKTDSQIL K ELEESSFRKT FEDYLHNVVF VPRPSRKRRS LGDVGNVTVA VPTVAAFPNT SSTSVPTSPE EHRPFEKVVN KESLVISGL RHFTGYRIEL QACNQDTPEE RCSVAAYVSA RTMPEAKADD IVGPVTHEIF ENNVVHLMWQ EPKEPNGLIV LYEVSYRRYG DEELHLCVS RKHFALERGC RLRGLSPGNY SVRIRATSLA GNGSWTEPTY FYVTDYLDVP SNIAKIIIGP LIFVFLFSVV I GSIYLFLR KRQPDGPLGP LYASSNPEYL SASDVFPCSV YVPDEWEVSR EKITLLRELG QGSFGMVYEG NARDIIKGEA ET RVAVKTV NESASLRERI EFLNEASVMK GFTCHHVVRL LGVVSKGQPT LVVMELMAHG DLKSYLRSLR PEAENNPGRP PPT LQEMIQ MAAEIADGMA YLNAKKFVHR DLAARNCMVA HDFTVKIGDF GMTRDIYETD YYRKGGKGLL PVRWMAPESL KDGV FTTSS DMWSFGVVLW EITSLAEQPY QGLSNEQVLK FVMDGGYLDQ PDNCPERVTD LMRMCWQFNP KMRPTFLEIV NLLKD DLHP SFPEVSFFHS EENKAPESEE LEMEFEDMEN VPLDRSSHCQ REEAGGRDGG SSLGFKRSYE EHIPYTHMNG GKKNGR ILT LPRSNPS

UniProtKB: Insulin receptor

-
Macromolecule #2: Insulin-like growth factor II

MacromoleculeName: Insulin-like growth factor II / type: protein_or_peptide / ID: 2 / Number of copies: 4 / Enantiomer: LEVO
Source (natural)Organism: Homo sapiens (human)
Molecular weightTheoretical: 20.170398 KDa
Recombinant expressionOrganism: Escherichia coli (E. coli)
SequenceString:
MGIPMGKSML VLLTFLAFAS CCIAAYRPSE TLCGGELVDT LQFVCGDRGF YFSRPASRVS RRSRGIVEEC CFRSCDLALL ETYCATPAK SERDVSTPPT VLPDNFPRYP VGKFFQYDTW KQSTQRLRRG LPALLRARRG HVLAKELEAF REAKRHRPLI A LPTQDPAH GGAPPEMASN RK

UniProtKB: Insulin-like growth factor 2

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation stateparticle

-
Sample preparation

BufferpH: 7.5
VitrificationCryogen name: ETHANE

-
Electron microscopy

MicroscopeFEI TITAN KRIOS
Specialist opticsEnergy filter - Name: GIF Bioquantum / Energy filter - Slit width: 20 eV
Image recordingFilm or detector model: GATAN K3 BIOQUANTUM (6k x 4k) / Average electron dose: 60.0 e/Å2
Electron beamAcceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
Electron opticsIllumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Nominal defocus max: 2.6 µm / Nominal defocus min: 1.6 µm
Sample stageSpecimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER / Cooling holder cryogen: NITROGEN
Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company

+
Image processing

Particle selectionNumber selected: 3422813
Startup modelType of model: OTHER
Final reconstructionApplied symmetry - Point group: C2 (2 fold cyclic) / Resolution.type: BY AUTHOR / Resolution: 3.6 Å / Resolution method: FSC 0.143 CUT-OFF / Software - Name: RELION / Number images used: 66937
Initial angle assignmentType: PROJECTION MATCHING / Software - Name: RELION
Final angle assignmentType: PROJECTION MATCHING / Software - Name: RELION
Final 3D classificationSoftware - Name: RELION

-
Atomic model buiding 1

RefinementSpace: REAL / Protocol: RIGID BODY FIT
Output model

PDB-8vjb:
Cryo-EM structure of short form insulin receptor (IR-A) with four IGF2 bound, symmetric conformation.

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more