[English] 日本語
Yorodumi
- EMDB-30184: EcoR124I-Ocr in the Translocation State -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-30184
TitleEcoR124I-Ocr in the Translocation State
Map data
Sample
  • Complex: EcoR124I-Ocr
Function / homology
Function and homology information


type I site-specific deoxyribonuclease / type I site-specific deoxyribonuclease activity / N-methyltransferase activity / site-specific DNA-methyltransferase (adenine-specific) / site-specific DNA-methyltransferase (adenine-specific) activity / DNA restriction-modification system / methylation / DNA binding / ATP binding
Similarity search - Function
Antirestriction / Antirestriction protein ArdA, domain 3 / Antirestriction protein ArdA, domain 1 / Antirestriction protein ArdA, domain 2 / Antirestriction protein (ArdA) / Restriction endonuclease, type I, methylase subunit / Restriction endonuclease, type I, HsdR, N-terminal / Type I restriction enzyme R protein, C-terminal / SWI2/SNF2 ATPase / : ...Antirestriction / Antirestriction protein ArdA, domain 3 / Antirestriction protein ArdA, domain 1 / Antirestriction protein ArdA, domain 2 / Antirestriction protein (ArdA) / Restriction endonuclease, type I, methylase subunit / Restriction endonuclease, type I, HsdR, N-terminal / Type I restriction enzyme R protein, C-terminal / SWI2/SNF2 ATPase / : / Type I restriction enzyme R protein N terminus (HSDR_N) / Type I restriction and modification enzyme - subunit R C terminal / SWI2/SNF2 ATPase / UvrB domain 3 / N6 adenine-specific DNA methyltransferase, N-terminal domain / : / Type I restriction enzyme EcoKI-like, methylase subunit, N-terminal domain superfamily / : / HsdM N-terminal domain / Restriction endonuclease, type I, HsdR / Type I restriction modification DNA specificity domain superfamily / Type I restriction modification DNA specificity domain / Type I restriction modification DNA specificity domain / N-6 DNA Methylase / DNA methylase, adenine-specific / N-6 Adenine-specific DNA methylases signature. / DNA methylase, N-6 adenine-specific, conserved site / Superfamilies 1 and 2 helicase ATP-binding type-1 domain profile. / DEAD-like helicases superfamily / Helicase superfamily 1/2, ATP-binding domain / S-adenosyl-L-methionine-dependent methyltransferase superfamily / P-loop containing nucleoside triphosphate hydrolase
Similarity search - Domain/homology
Antirestriction protein ArdA / Type I restriction enzyme EcoR124I/EcoR124II methylase subunit / Type I restriction enzyme EcoR124I/EcoR124II specificity subunit / Type I restriction enzyme EcoR124I/EcoR124II endonuclease subunit / Type I restriction enzyme EcoR124I/EcoR124II endonuclease subunit
Similarity search - Component
Biological speciesEscherichia coli (E. coli)
Methodsingle particle reconstruction / cryo EM / Resolution: 6.17 Å
AuthorsGao Y / Gao P
CitationJournal: Nat Microbiol / Year: 2020
Title: Structural insights into assembly, operation and inhibition of a type I restriction-modification system.
Authors: Yina Gao / Duanfang Cao / Jingpeng Zhu / Han Feng / Xiu Luo / Songqing Liu / Xiao-Xue Yan / Xinzheng Zhang / Pu Gao /
Abstract: Type I restriction-modification (R-M) systems are widespread in prokaryotic genomes and provide robust protection against foreign DNA. They are multisubunit enzymes with methyltransferase, ...Type I restriction-modification (R-M) systems are widespread in prokaryotic genomes and provide robust protection against foreign DNA. They are multisubunit enzymes with methyltransferase, endonuclease and translocase activities. Despite extensive studies over the past five decades, little is known about the molecular mechanisms of these sophisticated machines. Here, we report the cryo-electron microscopy structures of the representative EcoR124I R-M system in different assemblies (RMS, RMS and MS) bound to target DNA and the phage and mobile genetic element-encoded anti-restriction proteins Ocr and ArdA. EcoR124I can precisely regulate different enzymatic activities by adopting distinct conformations. The marked conformational transitions of EcoR124I are dependent on the intrinsic flexibility at both the individual-subunit and assembled-complex levels. Moreover, Ocr and ArdA use a DNA-mimicry strategy to inhibit multiple activities, but do not block the conformational transitions of the complexes. These structural findings, complemented by mutational studies of key intermolecular contacts, provide insights into assembly, operation and inhibition mechanisms of type I R-M systems.
History
DepositionApr 2, 2020-
Header (metadata) releaseMay 27, 2020-
Map releaseMay 27, 2020-
UpdateSep 16, 2020-
Current statusSep 16, 2020Processing site: PDBj / Status: Released

-
Structure visualization

Movie
  • Surface view with section colored by density value
  • Surface level: 0.04
  • Imaged by UCSF Chimera
  • Download
  • Surface view colored by cylindrical radius
  • Surface level: 0.04
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerEM map:
SurfViewMolmilJmol/JSmol
Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_30184.map.gz / Format: CCP4 / Size: 64 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
Projections & slices

Image control

Size
Brightness
Contrast
Others
AxesZ (Sec.)Y (Row.)X (Col.)
1.35 Å/pix.
x 256 pix.
= 345.6 Å
1.35 Å/pix.
x 256 pix.
= 345.6 Å
1.35 Å/pix.
x 256 pix.
= 345.6 Å

Surface

Projections

Slices (1/3)

Slices (1/2)

Slices (2/3)

Images are generated by Spider.

Voxel sizeX=Y=Z: 1.35 Å
Density
Contour LevelBy AUTHOR: 0.04 / Movie #1: 0.04
Minimum - Maximum-0.02287323 - 0.11466076
Average (Standard dev.)0.000709497 (±0.0069525843)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin-128-128-128
Dimensions256256256
Spacing256256256
CellA=B=C: 345.6 Å
α=β=γ: 90.0 °

CCP4 map header:

modeImage stored as Reals
Å/pix. X/Y/Z1.351.351.35
M x/y/z256256256
origin x/y/z0.0000.0000.000
length x/y/z345.600345.600345.600
α/β/γ90.00090.00090.000
MAP C/R/S123
start NC/NR/NS-128-128-128
NC/NR/NS256256256
D min/max/mean-0.0230.1150.001

-
Supplemental data

-
Sample components

-
Entire : EcoR124I-Ocr

EntireName: EcoR124I-Ocr
Components
  • Complex: EcoR124I-Ocr

-
Supramolecule #1: EcoR124I-Ocr

SupramoleculeName: EcoR124I-Ocr / type: complex / ID: 1 / Parent: 0 / Macromolecule list: #1-#4
Source (natural)Organism: Escherichia coli (E. coli)
Recombinant expressionOrganism: Escherichia coli (E. coli)

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation stateparticle

-
Sample preparation

BufferpH: 7.5
VitrificationCryogen name: ETHANE

-
Electron microscopy

MicroscopeFEI TITAN KRIOS
Image recordingFilm or detector model: GATAN K2 SUMMIT (4k x 4k) / Average electron dose: 60.0 e/Å2
Electron beamAcceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
Electron opticsIllumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD
Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company

-
Image processing

Final reconstructionResolution.type: BY AUTHOR / Resolution: 6.17 Å / Resolution method: FSC 0.143 CUT-OFF / Number images used: 15240
Initial angle assignmentType: PROJECTION MATCHING
Final angle assignmentType: PROJECTION MATCHING

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more