- EMDB-11434: bovine ATP synthase dimer state3:state1 -
+
Open data
ID or keywords:
Loading...
-
Basic information
Entry
Database: EMDB / ID: EMD-11434
Title
bovine ATP synthase dimer state3:state1
Map data
ATP synthase dimer state3:state1 main map
Sample
Complex: Bovine ATP synthase dimer
Complex: monomeric bovine ATP synthase
Complex: Bovine ATP synthase IF1
Function / homology
Function and homology information
negative regulation of mitochondrial ATP synthesis coupled proton transport / angiostatin binding / negative regulation of hydrolase activity / Formation of ATP by chemiosmotic coupling / Cristae formation / ATPase inhibitor activity / mitochondrial proton-transporting ATP synthase complex assembly / mitochondrial envelope / heme biosynthetic process / proton-transporting ATP synthase complex ...negative regulation of mitochondrial ATP synthesis coupled proton transport / angiostatin binding / negative regulation of hydrolase activity / Formation of ATP by chemiosmotic coupling / Cristae formation / ATPase inhibitor activity / mitochondrial proton-transporting ATP synthase complex assembly / mitochondrial envelope / heme biosynthetic process / proton-transporting ATP synthase complex / Mitochondrial protein degradation / negative regulation of endothelial cell proliferation / proton transmembrane transporter activity / proton motive force-driven ATP synthesis / proton motive force-driven mitochondrial ATP synthesis / : / : / H+-transporting two-sector ATPase / proton-transporting ATPase activity, rotational mechanism / proton-transporting ATP synthase activity, rotational mechanism / proton transmembrane transport / aerobic respiration / erythrocyte differentiation / mitochondrial membrane / ADP binding / ATPase binding / protein homotetramerization / mitochondrial inner membrane / calmodulin binding / lipid binding / structural molecule activity / cell surface / protein homodimerization activity / protein-containing complex / ATP hydrolysis activity / mitochondrion / ATP binding / identical protein binding / plasma membrane / cytoplasm Similarity search - Function
ATP synthase membrane subunit K / ATP synthase regulation / ATP synthase subunit ATP5MJ, mitochondrial / Mitochondrial proteolipid / ATP synthase, F0 complex, subunit G, mitochondrial / ATP synthase, F0 complex, subunit E, mitochondrial / Mitochondrial ATP synthase subunit g, animal / Mitochondrial ATP synthase g subunit / ATP synthase E chain / ATP synthase protein 8, metazoa ...ATP synthase membrane subunit K / ATP synthase regulation / ATP synthase subunit ATP5MJ, mitochondrial / Mitochondrial proteolipid / ATP synthase, F0 complex, subunit G, mitochondrial / ATP synthase, F0 complex, subunit E, mitochondrial / Mitochondrial ATP synthase subunit g, animal / Mitochondrial ATP synthase g subunit / ATP synthase E chain / ATP synthase protein 8, metazoa / Mitochondrial ATPase inhibitor / Mitochondrial F1-F0 ATP synthase subunit F, predicted / ATP synthase protein 8, mammals / ATP synthase protein 8 / Mitochondrial ATPase inhibitor, IATP / Mitochondrial F1F0-ATP synthase, subunit f / ATP synthase-coupling factor 6, mitochondrial / ATP synthase-coupling factor 6 superfamily, mitochondrial / Mitochondrial ATP synthase coupling factor 6 / : / Metazoan delta subunit of F1F0-ATP synthase, C-terminal domain / ATP synthase delta/epsilon subunit, C-terminal domain superfamily / ATP synthase, F0 complex, subunit B/MI25 / ATP synthase, F0 complex, subunit B / Mitochondrial ATP synthase B chain precursor (ATP-synt_B) / ATP synthase, F0 complex, subunit D, mitochondrial / ATP synthase D chain, mitochondrial (ATP5H) / ATP synthase, F0 complex, subunit D superfamily, mitochondrial / ATP synthase, F0 complex, subunit A, bacterial/mitochondria / ATP synthase, F1 complex, epsilon subunit, mitochondrial / ATP synthase, F1 complex, epsilon subunit superfamily, mitochondrial / Mitochondrial ATP synthase epsilon chain / ATPase, OSCP/delta subunit, conserved site / ATP synthase delta (OSCP) subunit signature. / F1F0 ATP synthase OSCP/delta subunit, N-terminal domain superfamily / ATP synthase, F0 complex, subunit A / ATP synthase, F0 complex, subunit A, active site / ATP synthase, F0 complex, subunit A superfamily / ATP synthase A chain / ATP synthase a subunit signature. / ATPase, OSCP/delta subunit / ATP synthase delta (OSCP) subunit / ATP synthase, F1 complex, delta/epsilon subunit / ATP synthase, F1 complex, delta/epsilon subunit, N-terminal / F0F1 ATP synthase delta/epsilon subunit, N-terminal / ATP synthase, Delta/Epsilon chain, beta-sandwich domain / ATP synthase, F0 complex, subunit C / F1F0 ATP synthase subunit C superfamily / ATP synthase, F0 complex, subunit C, DCCD-binding site / ATP synthase c subunit signature. / ATP synthase, F1 complex, gamma subunit conserved site / ATP synthase gamma subunit signature. / ATP synthase, F1 complex, beta subunit / ATP synthase, alpha subunit, C-terminal domain superfamily / : / ATP synthase, F1 complex, gamma subunit / ATP synthase, F1 complex, gamma subunit superfamily / ATP synthase / ATP synthase, F1 complex, alpha subunit nucleotide-binding domain / ATP synthase, alpha subunit, C-terminal / ATP synthase, F1 complex, alpha subunit / ATP synthase alpha/beta chain, C terminal domain / V-ATPase proteolipid subunit C-like domain / F/V-ATP synthase subunit C superfamily / ATP synthase subunit C / : / ATPase, F1/V1 complex, beta/alpha subunit, C-terminal / C-terminal domain of V and A type ATP synthase / ATP synthase subunit alpha, N-terminal domain-like superfamily / ATPase, F1/V1/A1 complex, alpha/beta subunit, N-terminal domain superfamily / ATPase, F1/V1/A1 complex, alpha/beta subunit, N-terminal domain / ATP synthase alpha/beta family, beta-barrel domain / ATPase, alpha/beta subunit, nucleotide-binding domain, active site / ATP synthase alpha and beta subunits signature. / ATPase, F1/V1/A1 complex, alpha/beta subunit, nucleotide-binding domain / ATP synthase alpha/beta family, nucleotide-binding domain / ATPases associated with a variety of cellular activities / AAA+ ATPase domain / P-loop containing nucleoside triphosphate hydrolase Similarity search - Domain/homology
ATP synthase subunit beta, mitochondrial / ATP synthase subunit a / ATPase inhibitor, mitochondrial / ATP synthase-coupling factor 6, mitochondrial / ATP synthase protein 8 / ATP synthase subunit delta, mitochondrial / ATP synthase subunit gamma, mitochondrial / ATP synthase subunit epsilon, mitochondrial / ATP synthase F(0) complex subunit C2, mitochondrial / ATP synthase F(0) complex subunit B1, mitochondrial ...ATP synthase subunit beta, mitochondrial / ATP synthase subunit a / ATPase inhibitor, mitochondrial / ATP synthase-coupling factor 6, mitochondrial / ATP synthase protein 8 / ATP synthase subunit delta, mitochondrial / ATP synthase subunit gamma, mitochondrial / ATP synthase subunit epsilon, mitochondrial / ATP synthase F(0) complex subunit C2, mitochondrial / ATP synthase F(0) complex subunit B1, mitochondrial / ATP synthase subunit d, mitochondrial / ATP synthase subunit O, mitochondrial / ATP synthase subunit ATP5MJ, mitochondrial / ATP synthase subunit alpha, mitochondrial / ATP synthase subunit e, mitochondrial / ATP synthase subunit f, mitochondrial / ATP synthase subunit g, mitochondrial / ATP synthase membrane subunit K, mitochondrial Similarity search - Component
Biological species
Bos taurus (domestic cattle)
Method
single particle reconstruction / cryo EM / Resolution: 9.7 Å
Journal: Proc Natl Acad Sci U S A / Year: 2021 Title: Interface mobility between monomers in dimeric bovine ATP synthase participates in the ultrastructure of inner mitochondrial membranes. Authors: Tobias E Spikes / Martin G Montgomery / John E Walker / Abstract: The ATP synthase complexes in mitochondria make the ATP required to sustain life by a rotary mechanism. Their membrane domains are embedded in the inner membranes of the organelle, and they dimerize ...The ATP synthase complexes in mitochondria make the ATP required to sustain life by a rotary mechanism. Their membrane domains are embedded in the inner membranes of the organelle, and they dimerize via interactions between their membrane domains. The dimers form extensive chains along the tips of the cristae with the two rows of monomeric catalytic domains extending into the mitochondrial matrix at an angle to each other. Disruption of the interface between dimers by mutation affects the morphology of the cristae severely. By analysis of particles of purified dimeric bovine ATP synthase by cryo-electron microscopy, we have shown that the angle between the central rotatory axes of the monomeric complexes varies between ca. 76 and 95°. These particles represent active dimeric ATP synthase. Some angular variations arise directly from the catalytic mechanism of the enzyme, and others are independent of catalysis. The monomer-monomer interaction is mediated mainly by j subunits attached to the surface of wedge-shaped protein-lipid structures in the membrane domain of the complex, and the angular variation arises from rotational and translational changes in this interaction, and combinations of both. The structures also suggest how the dimeric ATP synthases might be interacting with each other to form the characteristic rows along the tips of the cristae via other interwedge contacts, molding themselves to the range of oligomeric arrangements observed by tomography of mitochondrial membranes, and at the same time allowing the ATP synthase to operate under the range of physiological conditions that influence the structure of the cristae.
History
Deposition
Jul 21, 2020
-
Header (metadata) release
Feb 3, 2021
-
Map release
Feb 3, 2021
-
Update
Feb 24, 2021
-
Current status
Feb 24, 2021
Processing site: PDBe / Status: Released
-
Structure visualization
Movie
Surface view with section colored by density value
Name: Bovine ATP synthase dimer / type: complex / ID: 1 / Parent: 0 / Macromolecule list: #1-#18 / Details: bovine ATP synthase inhibited by IF1 1-60His
Molecular weight
Experimental: 7.441 KDa
-
Supramolecule #2: monomeric bovine ATP synthase
Supramolecule
Name: monomeric bovine ATP synthase / type: complex / ID: 2 / Parent: 1 / Macromolecule list: #1-#5, #7-#18 Details: monomeric bovine ATP synthase inhibited by IF1 1-60His
Source (natural)
Organism: Bos taurus (domestic cattle)
-
Supramolecule #3: Bovine ATP synthase IF1
Supramolecule
Name: Bovine ATP synthase IF1 / type: complex / ID: 3 / Parent: 1 / Macromolecule list: #6 / Details: residues 1-60 of IF1 with a 6His tag
Source (natural)
Organism: Bos taurus (domestic cattle)
Recombinant expression
Organism: Escherichia coli (E. coli)
-
Experimental details
-
Structure determination
Method
cryo EM
Processing
single particle reconstruction
Aggregation state
particle
-
Sample preparation
Concentration
4.5 mg/mL
Buffer
pH: 7.4
Vitrification
Cryogen name: ETHANE / Chamber humidity: 100 % / Chamber temperature: 294 K / Instrument: FEI VITROBOT MARK IV Details: The sample was allowed to penetrate through the holey support and to distribute to both sides of the grid surface for ca. 15 sec. Then the grids were blotted with filter paper for 8-10 sec before blotting..
Details
Nickel affinity purified filled by gel filtration
-
Electron microscopy
Microscope
FEI TITAN KRIOS
Image recording
Film or detector model: GATAN K2 QUANTUM (4k x 4k) / Detector mode: COUNTING / Average exposure time: 12.0 sec. / Average electron dose: 4.6 e/Å2
Electron beam
Acceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
Electron optics
Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi