+
Open data
-
Basic information
Entry | Database: PDB / ID: 9vck | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Cryo-EM structure of SARS-CoV-2 nsp10/nsp14:RNA:SMP complex | |||||||||
![]() |
| |||||||||
![]() | VIRAL PROTEIN/RNA / SARS-CoV-2 / exonuclease / nsp14 / nucleotide analogue / VIRAL PROTEIN-RNA complex | |||||||||
Function / homology | ![]() protein guanylyltransferase activity / RNA endonuclease activity producing 3'-phosphomonoesters, hydrolytic mechanism / mRNA guanylyltransferase activity / 5'-3' RNA helicase activity / Lyases; Phosphorus-oxygen lyases / Assembly of the SARS-CoV-2 Replication-Transcription Complex (RTC) / symbiont-mediated suppression of host cytoplasmic pattern recognition receptor signaling pathway via inhibition of TBK1 activity / Maturation of replicase proteins / TRAF3-dependent IRF activation pathway / ISG15-specific peptidase activity ...protein guanylyltransferase activity / RNA endonuclease activity producing 3'-phosphomonoesters, hydrolytic mechanism / mRNA guanylyltransferase activity / 5'-3' RNA helicase activity / Lyases; Phosphorus-oxygen lyases / Assembly of the SARS-CoV-2 Replication-Transcription Complex (RTC) / symbiont-mediated suppression of host cytoplasmic pattern recognition receptor signaling pathway via inhibition of TBK1 activity / Maturation of replicase proteins / TRAF3-dependent IRF activation pathway / ISG15-specific peptidase activity / Transcription of SARS-CoV-2 sgRNAs / snRNP Assembly / Translation of Replicase and Assembly of the Replication Transcription Complex / Replication of the SARS-CoV-2 genome / Hydrolases; Acting on ester bonds; Exoribonucleases producing 5'-phosphomonoesters / host cell endoplasmic reticulum-Golgi intermediate compartment / double membrane vesicle viral factory outer membrane / 3'-5'-RNA exonuclease activity / SARS coronavirus main proteinase / 5'-3' DNA helicase activity / host cell endosome / symbiont-mediated degradation of host mRNA / mRNA guanylyltransferase / symbiont-mediated suppression of host ISG15-protein conjugation / symbiont-mediated suppression of host toll-like receptor signaling pathway / G-quadruplex RNA binding / symbiont-mediated suppression of host cytoplasmic pattern recognition receptor signaling pathway via inhibition of IRF3 activity / omega peptidase activity / SARS-CoV-2 modulates host translation machinery / mRNA (guanine-N7)-methyltransferase / methyltransferase cap1 / host cell Golgi apparatus / symbiont-mediated suppression of host NF-kappaB cascade / symbiont-mediated perturbation of host ubiquitin-like protein modification / DNA helicase / single-stranded 3'-5' DNA helicase activity / double-stranded DNA helicase activity / forked DNA-dependent helicase activity / four-way junction helicase activity / methyltransferase cap1 activity / ubiquitinyl hydrolase 1 / mRNA 5'-cap (guanine-N7-)-methyltransferase activity / cysteine-type deubiquitinase activity / Hydrolases; Acting on peptide bonds (peptidases); Cysteine endopeptidases / single-stranded RNA binding / host cell perinuclear region of cytoplasm / regulation of autophagy / viral protein processing / lyase activity / host cell endoplasmic reticulum membrane / RNA helicase / symbiont-mediated suppression of host type I interferon-mediated signaling pathway / symbiont-mediated suppression of host gene expression / copper ion binding / viral translational frameshifting / symbiont-mediated activation of host autophagy / RNA-directed RNA polymerase / cysteine-type endopeptidase activity / viral RNA genome replication / RNA-directed RNA polymerase activity / DNA-templated transcription / lipid binding / host cell nucleus / SARS-CoV-2 activates/modulates innate and adaptive immune responses / ATP hydrolysis activity / proteolysis / RNA binding / zinc ion binding / ATP binding / membrane Similarity search - Function | |||||||||
Biological species | ![]() ![]() | |||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 4.22 Å | |||||||||
![]() | Wang, J. / Lou, Z. / Liu, D. | |||||||||
Funding support | ![]()
| |||||||||
![]() | ![]() Title: Structural Basis and Rational Design of Nucleotide Analogue Inhibitor Evading the SARS-CoV-2 Proofreading Enzyme. Authors: Junbo Wang / Yufan Pan / Yixiao Liu / Bo Huang / Ge Jin / Lejin Zhang / Feng Zhou / Xiaoyu Chang / Yucen Huang / Liming Yan / Yuanchen Dong / Zihe Rao / Dongsheng Liu / Zhiyong Lou / ![]() Abstract: All coronaviruses (CoVs) encode an exoribonuclease in nonstructural protein nsp14 (nsp14 ExoN), which is required for the excision of mismatched nucleotides or nucleotide analogues (NAs) that are ...All coronaviruses (CoVs) encode an exoribonuclease in nonstructural protein nsp14 (nsp14 ExoN), which is required for the excision of mismatched nucleotides or nucleotide analogues (NAs) that are incorporated into nascent RNA. Here, we investigated the mechanism by which NAs evade SARS-CoV-2 nsp14 ExoN cleavage using chemically synthesized RNA with NAs incorporated at the 3' end. Nsp14 ExoN exhibited significantly attenuated activity on RNA with sofosbuvir monophosphate (SMP) compared with natural nucleotides, remdesivir/molnupiravir monophosphate, and, in particular, AT-9010 monophosphate (ATMP), which has the same chemically modified ribose moiety as SMP, incorporated at the 3' end. Cryo-electron microscopy structures of nsp10/14 bound to RNA-SMP/-ATMP and mutagenesis studies revealed the essential roles of H95/Q145/F146 in recognizing the base moiety and thus pulling the NAs into a favored conformation for cleavage. Therefore, NAs may evade nsp14 ExoN cleavage by having (1) a base that does not interact with H95, Q145, or F146 and (2) a chemically modified ribose. Guided by this hypothesis, two NAs were designed to effectively resist nsp14 ExoN cleavage. These results inform the rational design of anti-CoV NAs. | |||||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 156 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 115.8 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Summary document | ![]() | 1.3 MB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 1.3 MB | Display | |
Data in XML | ![]() | 35.9 KB | Display | |
Data in CIF | ![]() | 52.3 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 64956MC ![]() 9vclC M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
-Protein , 2 types, 2 molecules AB
#1: Protein | Mass: 13805.737 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() Gene: rep, 1a-1b / Production host: ![]() ![]() |
---|---|
#2: Protein | Mass: 59316.824 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() Gene: rep, 1a-1b / Production host: ![]() ![]() References: UniProt: P0DTD1, mRNA (guanine-N7)-methyltransferase, Hydrolases; Acting on ester bonds; Exoribonucleases producing 5'-phosphomonoesters |
-RNA chain , 2 types, 2 molecules PT
#3: RNA chain | Mass: 8217.931 Da / Num. of mol.: 1 / Source method: obtained synthetically Source: (synth.) ![]() ![]() |
---|---|
#4: RNA chain | Mass: 8967.316 Da / Num. of mol.: 1 / Source method: obtained synthetically Source: (synth.) ![]() ![]() |
-Non-polymers , 3 types, 8 molecules 


#5: Chemical | ChemComp-ZN / #6: Chemical | #7: Chemical | ChemComp-K5X / [( | Mass: 340.199 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: C10H14FN2O8P / Feature type: SUBJECT OF INVESTIGATION |
---|
-Details
Has ligand of interest | Y |
---|---|
Has protein modification | N |
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component | Name: SARS-CoV-2 nsp10/14:RNA-SMP / Type: COMPLEX / Entity ID: #1-#2, #4 / Source: MULTIPLE SOURCES |
---|---|
Source (natural) | Organism: ![]() ![]() |
Source (recombinant) | Organism: ![]() ![]() |
Buffer solution | pH: 7.5 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: TFS KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 2200 nm / Nominal defocus min: 1200 nm |
Image recording | Electron dose: 50 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k) |
-
Processing
EM software |
| ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||||||||||
3D reconstruction | Resolution: 4.22 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 179937 / Symmetry type: POINT | ||||||||||||||||||||||||
Refinement | Stereochemistry target values: REAL-SPACE (WEIGHTED MAP SUM AT ATOM CENTERS) | ||||||||||||||||||||||||
Refine LS restraints |
|