National Natural Science Foundation of China (NSFC)
32188101
China
National Natural Science Foundation of China (NSFC)
22477122
China
Citation
Journal: J Am Chem Soc / Year: 2025 Title: Structural Basis and Rational Design of Nucleotide Analogue Inhibitor Evading the SARS-CoV-2 Proofreading Enzyme. Authors: Junbo Wang / Yufan Pan / Yixiao Liu / Bo Huang / Ge Jin / Lejin Zhang / Feng Zhou / Xiaoyu Chang / Yucen Huang / Liming Yan / Yuanchen Dong / Zihe Rao / Dongsheng Liu / Zhiyong Lou / Abstract: All coronaviruses (CoVs) encode an exoribonuclease in nonstructural protein nsp14 (nsp14 ExoN), which is required for the excision of mismatched nucleotides or nucleotide analogues (NAs) that are ...All coronaviruses (CoVs) encode an exoribonuclease in nonstructural protein nsp14 (nsp14 ExoN), which is required for the excision of mismatched nucleotides or nucleotide analogues (NAs) that are incorporated into nascent RNA. Here, we investigated the mechanism by which NAs evade SARS-CoV-2 nsp14 ExoN cleavage using chemically synthesized RNA with NAs incorporated at the 3' end. Nsp14 ExoN exhibited significantly attenuated activity on RNA with sofosbuvir monophosphate (SMP) compared with natural nucleotides, remdesivir/molnupiravir monophosphate, and, in particular, AT-9010 monophosphate (ATMP), which has the same chemically modified ribose moiety as SMP, incorporated at the 3' end. Cryo-electron microscopy structures of nsp10/14 bound to RNA-SMP/-ATMP and mutagenesis studies revealed the essential roles of H95/Q145/F146 in recognizing the base moiety and thus pulling the NAs into a favored conformation for cleavage. Therefore, NAs may evade nsp14 ExoN cleavage by having (1) a base that does not interact with H95, Q145, or F146 and (2) a chemically modified ribose. Guided by this hypothesis, two NAs were designed to effectively resist nsp14 ExoN cleavage. These results inform the rational design of anti-CoV NAs.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi