[English] 日本語
Yorodumi
- PDB-9v6o: Cryo-EM structure of human kappa opioid receptor - G protein sign... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 9v6o
TitleCryo-EM structure of human kappa opioid receptor - G protein signaling complex bound with nalfurafine.
Components
  • (Guanine nucleotide-binding protein ...) x 3
  • Kappa-type opioid receptor
  • scFv16
KeywordsMEMBRANE PROTEIN / signal transduction
Function / homology
Function and homology information


response to acrylamide / adenylate cyclase-inhibiting opioid receptor signaling pathway / dynorphin receptor activity / regulation of saliva secretion / negative regulation of luteinizing hormone secretion / sensory perception of temperature stimulus / positive regulation of eating behavior / G protein-coupled opioid receptor activity / G protein-coupled opioid receptor signaling pathway / positive regulation of dopamine secretion ...response to acrylamide / adenylate cyclase-inhibiting opioid receptor signaling pathway / dynorphin receptor activity / regulation of saliva secretion / negative regulation of luteinizing hormone secretion / sensory perception of temperature stimulus / positive regulation of eating behavior / G protein-coupled opioid receptor activity / G protein-coupled opioid receptor signaling pathway / positive regulation of dopamine secretion / sensory perception / maternal behavior / positive regulation of potassium ion transmembrane transport / receptor serine/threonine kinase binding / positive regulation of p38MAPK cascade / neuropeptide binding / eating behavior / conditioned place preference / neuropeptide signaling pathway / estrous cycle / adenylate cyclase inhibitor activity / positive regulation of protein localization to cell cortex / MECP2 regulates neuronal receptors and channels / behavioral response to cocaine / T cell migration / Adenylate cyclase inhibitory pathway / D2 dopamine receptor binding / response to prostaglandin E / adenylate cyclase regulator activity / G protein-coupled serotonin receptor binding / adenylate cyclase-inhibiting serotonin receptor signaling pathway / axon terminus / sensory perception of pain / T-tubule / cellular response to forskolin / regulation of mitotic spindle organization / Peptide ligand-binding receptors / sarcoplasmic reticulum / response to nicotine / Regulation of insulin secretion / locomotory behavior / cellular response to glucose stimulus / positive regulation of cholesterol biosynthetic process / negative regulation of insulin secretion / G protein-coupled receptor binding / response to insulin / response to peptide hormone / adenylate cyclase-inhibiting G protein-coupled receptor signaling pathway / adenylate cyclase-modulating G protein-coupled receptor signaling pathway / response to estrogen / centriolar satellite / G-protein beta/gamma-subunit complex binding / Olfactory Signaling Pathway / Activation of the phototransduction cascade / G beta:gamma signalling through PLC beta / Presynaptic function of Kainate receptors / Thromboxane signalling through TP receptor / G protein-coupled acetylcholine receptor signaling pathway / Activation of G protein gated Potassium channels / Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits / G-protein activation / Prostacyclin signalling through prostacyclin receptor / G beta:gamma signalling through CDC42 / Glucagon signaling in metabolic regulation / G beta:gamma signalling through BTK / Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) / ADP signalling through P2Y purinoceptor 12 / photoreceptor disc membrane / Sensory perception of sweet, bitter, and umami (glutamate) taste / Glucagon-type ligand receptors / Adrenaline,noradrenaline inhibits insulin secretion / Vasopressin regulates renal water homeostasis via Aquaporins / GDP binding / Glucagon-like Peptide-1 (GLP1) regulates insulin secretion / G alpha (z) signalling events / synaptic vesicle membrane / cellular response to catecholamine stimulus / ADORA2B mediated anti-inflammatory cytokines production / ADP signalling through P2Y purinoceptor 1 / G beta:gamma signalling through PI3Kgamma / adenylate cyclase-activating dopamine receptor signaling pathway / Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding / GPER1 signaling / Inactivation, recovery and regulation of the phototransduction cascade / cellular response to prostaglandin E stimulus / G-protein beta-subunit binding / heterotrimeric G-protein complex / G alpha (12/13) signalling events / sensory perception of taste / extracellular vesicle / signaling receptor complex adaptor activity / Thrombin signalling through proteinase activated receptors (PARs) / retina development in camera-type eye / cellular response to lipopolysaccharide / G protein activity / presynaptic membrane / GTPase binding / Ca2+ pathway / fibroblast proliferation / midbody
Similarity search - Function
Kappa opioid receptor / Opioid receptor / G-protein alpha subunit, group I / Serpentine type 7TM GPCR chemoreceptor Srsx / Guanine nucleotide binding protein (G-protein), alpha subunit / G protein alpha subunit, helical insertion / G-protein alpha subunit / G-alpha domain profile. / G protein alpha subunit / G-protein, gamma subunit ...Kappa opioid receptor / Opioid receptor / G-protein alpha subunit, group I / Serpentine type 7TM GPCR chemoreceptor Srsx / Guanine nucleotide binding protein (G-protein), alpha subunit / G protein alpha subunit, helical insertion / G-protein alpha subunit / G-alpha domain profile. / G protein alpha subunit / G-protein, gamma subunit / G-protein gamma subunit domain profile. / G-protein gamma-like domain / G-protein gamma-like domain superfamily / GGL domain / G protein gamma subunit-like motifs / GGL domain / G protein beta WD-40 repeat protein / Guanine nucleotide-binding protein, beta subunit / G-protein, beta subunit / G-protein coupled receptors family 1 signature. / G protein-coupled receptor, rhodopsin-like / GPCR, rhodopsin-like, 7TM / G-protein coupled receptors family 1 profile. / 7 transmembrane receptor (rhodopsin family) / G-protein beta WD-40 repeat / WD40 repeat, conserved site / Trp-Asp (WD) repeats signature. / Trp-Asp (WD) repeats profile. / Trp-Asp (WD) repeats circular profile. / WD40 repeats / WD40 repeat / WD40-repeat-containing domain superfamily / WD40/YVTN repeat-like-containing domain superfamily / P-loop containing nucleoside triphosphate hydrolase
Similarity search - Domain/homology
nalfurafine / Kappa-type opioid receptor / Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2 / Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 / Guanine nucleotide-binding protein G(i) subunit alpha-1
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.76 Å
AuthorsSuno-Ikeda, C. / Takai, T. / Hirose, M. / Inoue, A. / Sugita, Y. / Kato, T. / Kobayashi, T. / Suno, R.
Funding support Japan, 6items
OrganizationGrant numberCountry
Japan Agency for Medical Research and Development (AMED)JP21am0101072 Japan
Japan Agency for Medical Research and Development (AMED)JP21am0401020 Japan
Japan Agency for Medical Research and Development (AMED)JP20ak0101103 Japan
Japan Society for the Promotion of Science (JSPS)19H03428 Japan
Japan Society for the Promotion of Science (JSPS)21H05112 Japan
Japan Agency for Medical Research and Development (AMED)JP21gm091000 Japan
CitationJournal: Nat Commun / Year: 2025
Title: Structural and dynamic insights into the biased signaling mechanism of the human kappa opioid receptor.
Authors: Chiyo Suno-Ikeda / Ryo Nishikawa / Riko Suzuki / Shun Yokoi / Seiya Iwata / Tomoyo Takai / Takaya Ogura / Mika Hirose / Akihisa Tokuda / Risako Katamoto / Akitoshi Inoue / Eri Asai / Ryoji ...Authors: Chiyo Suno-Ikeda / Ryo Nishikawa / Riko Suzuki / Shun Yokoi / Seiya Iwata / Tomoyo Takai / Takaya Ogura / Mika Hirose / Akihisa Tokuda / Risako Katamoto / Akitoshi Inoue / Eri Asai / Ryoji Kise / Yukihiko Sugita / Takayuki Kato / Hiroshi Nagase / Ayori Mitsutake / Tsuyoshi Saitoh / Kota Katayama / Asuka Inoue / Hideki Kandori / Takuya Kobayashi / Ryoji Suno /
Abstract: The κ-opioid receptor (KOR) is a member of the G protein-coupled receptor (GPCR) family, modulating cellular responses through transducers such as G proteins and β-arrestins. G-protein-biased KOR ...The κ-opioid receptor (KOR) is a member of the G protein-coupled receptor (GPCR) family, modulating cellular responses through transducers such as G proteins and β-arrestins. G-protein-biased KOR agonists aim to retain analgesic and antipruritic actions while limiting aversion and sedation. Aiming to inform G-biased KOR agonist design, we analyze signaling-relevant residues from structural and dynamic views. Here we show, using multiple complementary methods, shared residues that determine β-arrestin recruitment by nalfurafine and U-50,488H. Cryo-electron microscopy structures of the KOR-G signaling complexes identify the ligand binding mode in the activated state. Vibrational spectroscopy reveals ligand-induced conformational changes. Cell-based mutant experiments pinpoint four amino acids (K227, C286, H291, and Y312; Ballesteros-Weinstein numbering is shown in superscript) that play crucial roles in β-arrestin recruitment. Furthermore, MD simulations revealed that the four mutants tend to adopt conformations with reduced β-arrestin recruitment activity. Our research findings provide a foundation for enhancing KOR-mediated therapeutic effects while minimizing unwanted side effects by targeting specific residues within the KOR ligand-binding pocket, including K227 and Y312, which have previously been implicated in biased signaling.
History
DepositionMay 27, 2025Deposition site: PDBJ / Processing site: PDBJ
Revision 1.0Nov 19, 2025Provider: repository / Type: Initial release

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Guanine nucleotide-binding protein G(i) subunit alpha-1
B: Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1
G: Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2
R: Kappa-type opioid receptor
S: scFv16
hetero molecules


Theoretical massNumber of molelcules
Total (without water)152,5076
Polymers152,0305
Non-polymers4771
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy, not applicable
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

-
Guanine nucleotide-binding protein ... , 3 types, 3 molecules ABG

#1: Protein Guanine nucleotide-binding protein G(i) subunit alpha-1 / Adenylate cyclase-inhibiting G alpha protein


Mass: 40415.031 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: GNAI1 / Production host: Spodoptera frugiperda (fall armyworm) / References: UniProt: P63096
#2: Protein Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 / Transducin beta chain 1


Mass: 37728.152 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: GNB1 / Production host: Spodoptera frugiperda (fall armyworm) / References: UniProt: P62873
#3: Protein Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2 / G gamma-I


Mass: 7861.143 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: GNG2 / Production host: Spodoptera frugiperda (fall armyworm) / References: UniProt: P59768

-
Protein / Antibody / Non-polymers , 3 types, 3 molecules RS

#4: Protein Kappa-type opioid receptor


Mass: 38707.777 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: OPRK1 / Production host: Spodoptera frugiperda (fall armyworm) / References: UniProt: P41145
#5: Antibody scFv16


Mass: 27318.389 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Spodoptera frugiperda (fall armyworm)
#6: Chemical ChemComp-IVB / nalfurafine / ~{N}-[(4~{R},4~{a}~{S},7~{R},7~{a}~{R},12~{b}~{S})-3-(cyclopropylmethyl)-4~{a},9-bis(oxidanyl)-1,2,4,5,6,7,7~{a},13-octahydro-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl]-3-(furan-3-yl)-~{N}-methyl-propanamide


Mass: 476.564 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: C28H32N2O5 / Feature type: SUBJECT OF INVESTIGATION

-
Details

Has ligand of interestY
Has protein modificationY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Cryo-EM structure of the nalfurafine bound human opioid receptor
Type: COMPLEX / Entity ID: #1-#5 / Source: RECOMBINANT
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Spodoptera frugiperda (fall armyworm)
Buffer solutionpH: 7.5
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: TFS KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal defocus max: 1500 nm / Nominal defocus min: 700 nm / C2 aperture diameter: 50 µm
Image recordingElectron dose: 60 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

EM softwareName: PHENIX / Version: 1.21_5207 / Category: model refinement
CTF correctionType: NONE
3D reconstructionResolution: 2.76 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 7066947 / Symmetry type: POINT
RefinementHighest resolution: 2.76 Å
Stereochemistry target values: REAL-SPACE (WEIGHTED MAP SUM AT ATOM CENTERS)
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.0038529
ELECTRON MICROSCOPYf_angle_d0.48811599
ELECTRON MICROSCOPYf_dihedral_angle_d6.8781209
ELECTRON MICROSCOPYf_chiral_restr0.0411360
ELECTRON MICROSCOPYf_plane_restr0.0031454

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more