[English] 日本語
Yorodumi
- PDB-9jb0: Cryo-EM structure of the class II amyloid-beta 42 fibril containi... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 9jb0
TitleCryo-EM structure of the class II amyloid-beta 42 fibril containing a D-Asp at position 23
ComponentsAmyloid-beta precursor protein
KeywordsPROTEIN FIBRIL / aggregation
Function / homology
Function and homology information


amyloid-beta complex / negative regulation of presynapse assembly / cytosolic mRNA polyadenylation / collateral sprouting in absence of injury / microglia development / regulation of synapse structure or activity / regulation of Wnt signaling pathway / synaptic assembly at neuromuscular junction / Formyl peptide receptors bind formyl peptides and many other ligands / axo-dendritic transport ...amyloid-beta complex / negative regulation of presynapse assembly / cytosolic mRNA polyadenylation / collateral sprouting in absence of injury / microglia development / regulation of synapse structure or activity / regulation of Wnt signaling pathway / synaptic assembly at neuromuscular junction / Formyl peptide receptors bind formyl peptides and many other ligands / axo-dendritic transport / axon midline choice point recognition / smooth endoplasmic reticulum calcium ion homeostasis / astrocyte activation involved in immune response / NMDA selective glutamate receptor signaling pathway / mating behavior / regulation of spontaneous synaptic transmission / Golgi-associated vesicle / ciliary rootlet / PTB domain binding / Lysosome Vesicle Biogenesis / Insertion of tail-anchored proteins into the endoplasmic reticulum membrane / positive regulation of amyloid fibril formation / neuron remodeling / Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's disease models / nuclear envelope lumen / COPII-coated ER to Golgi transport vesicle / suckling behavior / signaling receptor activator activity / dendrite development / modulation of excitatory postsynaptic potential / TRAF6 mediated NF-kB activation / presynaptic active zone / positive regulation of protein metabolic process / neuromuscular process controlling balance / Advanced glycosylation endproduct receptor signaling / The NLRP3 inflammasome / negative regulation of long-term synaptic potentiation / regulation of presynapse assembly / regulation of multicellular organism growth / transition metal ion binding / intracellular copper ion homeostasis / negative regulation of neuron differentiation / ECM proteoglycans / spindle midzone / positive regulation of T cell migration / smooth endoplasmic reticulum / Purinergic signaling in leishmaniasis infection / forebrain development / positive regulation of chemokine production / clathrin-coated pit / Notch signaling pathway / protein serine/threonine kinase binding / positive regulation of G2/M transition of mitotic cell cycle / extracellular matrix organization / neuron projection maintenance / Mitochondrial protein degradation / response to interleukin-1 / ionotropic glutamate receptor signaling pathway / positive regulation of mitotic cell cycle / cholesterol metabolic process / axonogenesis / positive regulation of calcium-mediated signaling / dendritic shaft / platelet alpha granule lumen / adult locomotory behavior / positive regulation of glycolytic process / central nervous system development / positive regulation of interleukin-1 beta production / learning / trans-Golgi network membrane / positive regulation of long-term synaptic potentiation / endosome lumen / locomotory behavior / astrocyte activation / Post-translational protein phosphorylation / positive regulation of JNK cascade / microglial cell activation / regulation of long-term neuronal synaptic plasticity / serine-type endopeptidase inhibitor activity / synapse organization / TAK1-dependent IKK and NF-kappa-B activation / positive regulation of non-canonical NF-kappaB signal transduction / neuromuscular junction / visual learning / recycling endosome / positive regulation of interleukin-6 production / Golgi lumen / cognition / neuron cellular homeostasis / positive regulation of inflammatory response / endocytosis / Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs) / cellular response to amyloid-beta / neuron projection development / G2/M transition of mitotic cell cycle / positive regulation of tumor necrosis factor production / apical part of cell / synaptic vesicle / cell-cell junction / Platelet degranulation
Similarity search - Function
Amyloidogenic glycoprotein, copper-binding / Amyloidogenic glycoprotein, copper-binding domain conserved site / Amyloidogenic glycoprotein, copper-binding domain superfamily / Copper-binding of amyloid precursor, CuBD / Amyloid precursor protein (APP) copper-binding (CuBD) domain signature. / Amyloidogenic glycoprotein, amyloid-beta peptide superfamily / Beta-amyloid peptide (beta-APP) / Amyloidogenic glycoprotein, amyloid-beta peptide / Beta-amyloid precursor protein C-terminal / Amyloidogenic glycoprotein, intracellular domain, conserved site ...Amyloidogenic glycoprotein, copper-binding / Amyloidogenic glycoprotein, copper-binding domain conserved site / Amyloidogenic glycoprotein, copper-binding domain superfamily / Copper-binding of amyloid precursor, CuBD / Amyloid precursor protein (APP) copper-binding (CuBD) domain signature. / Amyloidogenic glycoprotein, amyloid-beta peptide superfamily / Beta-amyloid peptide (beta-APP) / Amyloidogenic glycoprotein, amyloid-beta peptide / Beta-amyloid precursor protein C-terminal / Amyloidogenic glycoprotein, intracellular domain, conserved site / Beta-amyloid precursor protein C-terminus / Amyloid precursor protein (APP) intracellular domain signature. / Amyloidogenic glycoprotein, extracellular / Amyloidogenic glycoprotein, heparin-binding / Amyloidogenic glycoprotein, E2 domain / E2 domain superfamily / Amyloidogenic glycoprotein, heparin-binding domain superfamily / Amyloid A4 N-terminal heparin-binding / E2 domain of amyloid precursor protein / Amyloid precursor protein (APP) E1 domain profile. / Amyloid precursor protein (APP) E2 domain profile. / amyloid A4 / Amyloidogenic glycoprotein / Proteinase inhibitor I2, Kunitz, conserved site / Pancreatic trypsin inhibitor (Kunitz) family signature. / BPTI/Kunitz family of serine protease inhibitors. / Pancreatic trypsin inhibitor Kunitz domain / Kunitz/Bovine pancreatic trypsin inhibitor domain / Pancreatic trypsin inhibitor (Kunitz) family profile. / Pancreatic trypsin inhibitor Kunitz domain superfamily / PH-like domain superfamily
Similarity search - Domain/homology
Amyloid-beta precursor protein
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / helical reconstruction / cryo EM / Resolution: 2.9 Å
AuthorsHsiao, L.C. / Lee, C.H. / Hsu, M.F. / Hsu, S.T.
Funding support Taiwan, 1items
OrganizationGrant numberCountry
Academia Sinica (Taiwan)110-2113-M-001-050-MY3 Taiwan
CitationJournal: J Mol Biol / Year: 2025
Title: Impacts of D-aspartate on the Aggregation Kinetics and Structural Polymorphism of Amyloid β Peptide 1-42.
Authors: Li-Ching Hsiao / Chih-Hsuan Lee / Karine Mazmanian / Masaya Yoshida / Genta Ito / Takuya Murata / Naoko Utsunomiya-Tate / Takeharu Haino / Shih-Ichi Tate / Shang-Te Danny Hsu /
Abstract: Isomerization of L-Aspartate (L-Asp) into D-aspartate (D-Asp) occurs naturally in proteins at a rate that is much faster than that of other amino acid types. Accumulation of D-Asp is age-dependent, ...Isomerization of L-Aspartate (L-Asp) into D-aspartate (D-Asp) occurs naturally in proteins at a rate that is much faster than that of other amino acid types. Accumulation of D-Asp is age-dependent, which could alter protein structures and, therefore, functions. Site-specific introduction of D-Asp can accelerate aggregation kinetics of a variety of proteins associated with misfolding diseases. Here, we showed by thioflavin T fluorescence that the isomerization of L-Asp at different positions of amyloid β peptide 1-42 (Aβ42) generates opposing effects on its aggregation kinetics. We further determined the atomic structures of Aβ42 amyloid fibrils harboring a single D-Asp at position 23 and two D-Asp at positions 7 and 23 by cryo-electron microscopy helical reconstruction - cross-validated by cryo-electron tomography and atomic force microscopy - to reveal how D-Asp contributes to the formation of a unique triple stranded amyloid fibril structure stabilized by two threads of well-ordered water molecules. These findings provide crucial insights into how the conversion from L- to D-Asp influences the aggregation propensity and amyloid polymorphism of Aβ42.
History
DepositionAug 26, 2024Deposition site: PDBJ / Processing site: PDBJ
Revision 1.0Mar 26, 2025Provider: repository / Type: Initial release
Revision 1.1Apr 2, 2025Group: Data collection / Database references / Category: citation / citation_author / em_admin
Item: _citation.page_last / _citation.pdbx_database_id_PubMed ..._citation.page_last / _citation.pdbx_database_id_PubMed / _citation.title / _citation_author.name / _em_admin.last_update
Revision 1.2Apr 9, 2025Group: Data collection / Database references / Category: citation / em_admin
Item: _citation.journal_volume / _citation.title / _em_admin.last_update

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
CC: Amyloid-beta precursor protein
BB: Amyloid-beta precursor protein
DD: Amyloid-beta precursor protein
EE: Amyloid-beta precursor protein
FF: Amyloid-beta precursor protein
AA: Amyloid-beta precursor protein
A: Amyloid-beta precursor protein
B: Amyloid-beta precursor protein
C: Amyloid-beta precursor protein
D: Amyloid-beta precursor protein
E: Amyloid-beta precursor protein
F: Amyloid-beta precursor protein


Theoretical massNumber of molelcules
Total (without water)54,24112
Polymers54,24112
Non-polymers00
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein/peptide
Amyloid-beta precursor protein / APP / ABPP / APPI / Alzheimer disease amyloid A4 protein homolog / Alzheimer disease amyloid ...APP / ABPP / APPI / Alzheimer disease amyloid A4 protein homolog / Alzheimer disease amyloid protein / Amyloid precursor protein / Amyloid-beta (A4) precursor protein / Amyloid-beta A4 protein / Cerebral vascular amyloid peptide / CVAP / PreA4 / Protease nexin-II / PN-II


Mass: 4520.087 Da / Num. of mol.: 12 / Source method: obtained synthetically / Source: (synth.) Homo sapiens (human) / References: UniProt: P05067
Has ligand of interestN
Has protein modificationN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: FILAMENT / 3D reconstruction method: helical reconstruction

-
Sample preparation

ComponentName: Class II amyloid-beta 42 fibril containing a D-Asp at position 23
Type: COMPLEX / Entity ID: all / Source: RECOMBINANT
Source (natural)Organism: Homo sapiens (human) / Organ: brain
Source (recombinant)Organism: synthetic construct (others)
Buffer solutionpH: 8
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportGrid material: COPPER / Grid mesh size: 300 divisions/in. / Grid type: Quantifoil R1.2/1.3
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Talos Arctica / Image courtesy: FEI Company
MicroscopyModel: FEI TALOS ARCTICA
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal magnification: 105000 X / Nominal defocus max: 1700 nm / Nominal defocus min: 1400 nm
Image recordingElectron dose: 50 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

EM softwareName: PHENIX / Version: 1.21_5207: / Category: model refinement
CTF correctionType: NONE
Helical symmertyAngular rotation/subunit: 178.45 ° / Axial rise/subunit: 2.37 Å / Axial symmetry: C1
3D reconstructionResolution: 2.9 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 250544 / Symmetry type: HELICAL
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.0043060
ELECTRON MICROSCOPYf_angle_d0.3644116
ELECTRON MICROSCOPYf_dihedral_angle_d4.428444
ELECTRON MICROSCOPYf_chiral_restr0.055468
ELECTRON MICROSCOPYf_plane_restr0.002528

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more