+
Open data
-
Basic information
Entry | Database: PDB / ID: 9j8o | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | Cryo-EM structure of BAF-Lamin A/C IgF-H1-nucleosome complex | |||||||||||||||||||||||||||||||||
![]() |
| |||||||||||||||||||||||||||||||||
![]() | NUCLEAR PROTEIN / Nucleosome / DNA binding proteins / Nuclear lamina | |||||||||||||||||||||||||||||||||
Function / homology | ![]() negative regulation of mesenchymal cell proliferation / structural constituent of nuclear lamina / negative regulation of protein ADP-ribosylation / ventricular cardiac muscle cell development / establishment or maintenance of microtubule cytoskeleton polarity / Breakdown of the nuclear lamina / DNA double-strand break attachment to nuclear envelope / Depolymerization of the Nuclear Lamina / nuclear envelope organization / nuclear pore localization ...negative regulation of mesenchymal cell proliferation / structural constituent of nuclear lamina / negative regulation of protein ADP-ribosylation / ventricular cardiac muscle cell development / establishment or maintenance of microtubule cytoskeleton polarity / Breakdown of the nuclear lamina / DNA double-strand break attachment to nuclear envelope / Depolymerization of the Nuclear Lamina / nuclear envelope organization / nuclear pore localization / Nuclear Envelope Breakdown / lamin filament / protein localization to nuclear envelope / mitotic nuclear membrane reassembly / XBP1(S) activates chaperone genes / negative regulation of DNA recombination / nuclear lamina / Apoptosis induced DNA fragmentation / Initiation of Nuclear Envelope (NE) Reformation / regulation of protein localization to nucleus / chromosome condensation / regulation of telomere maintenance / Integration of viral DNA into host genomic DNA / Autointegration results in viral DNA circles / intermediate filament / negative regulation of cardiac muscle hypertrophy in response to stress / nucleosomal DNA binding / nuclear migration / negative regulation of type I interferon production / negative regulation of viral genome replication / Formation of Senescence-Associated Heterochromatin Foci (SAHF) / muscle organ development / negative regulation of cGAS/STING signaling pathway / Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's disease models / 2-LTR circle formation / Vpr-mediated nuclear import of PICs / negative regulation of release of cytochrome c from mitochondria / Integration of provirus / APOBEC3G mediated resistance to HIV-1 infection / negative regulation of tumor necrosis factor-mediated signaling pathway / protein localization to nucleus / chromosome organization / negative regulation of megakaryocyte differentiation / protein localization to CENP-A containing chromatin / Chromatin modifying enzymes / Replacement of protamines by nucleosomes in the male pronucleus / CENP-A containing nucleosome / Packaging Of Telomere Ends / condensed chromosome / Recognition and association of DNA glycosylase with site containing an affected purine / Cleavage of the damaged purine / Recognition and association of DNA glycosylase with site containing an affected pyrimidine / Cleavage of the damaged pyrimidine / Deposition of new CENPA-containing nucleosomes at the centromere / telomere organization / Inhibition of DNA recombination at telomere / Meiotic synapsis / Interleukin-7 signaling / RNA Polymerase I Promoter Opening / Assembly of the ORC complex at the origin of replication / Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex / innate immune response in mucosa / negative regulation of innate immune response / SUMOylation of chromatin organization proteins / DNA methylation / Condensation of Prophase Chromosomes / regulation of cell migration / Chromatin modifications during the maternal to zygotic transition (MZT) / HCMV Late Events / SIRT1 negatively regulates rRNA expression / epigenetic regulation of gene expression / ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression / PRC2 methylates histones and DNA / Regulation of endogenous retroelements by KRAB-ZFP proteins / Defective pyroptosis / negative regulation of extrinsic apoptotic signaling pathway / Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) / HDACs deacetylate histones / Nonhomologous End-Joining (NHEJ) / RNA Polymerase I Promoter Escape / lipopolysaccharide binding / Transcriptional regulation by small RNAs / Formation of the beta-catenin:TCF transactivating complex / RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function / Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 / euchromatin / G2/M DNA damage checkpoint / HDMs demethylate histones / NoRC negatively regulates rRNA expression / regulation of protein stability / response to virus / DNA Damage/Telomere Stress Induced Senescence / B-WICH complex positively regulates rRNA expression / PKMTs methylate histone lysines / DNA integration / Meiotic recombination / chromatin DNA binding / Pre-NOTCH Transcription and Translation / structural constituent of cytoskeleton / positive regulation of receptor-mediated endocytosis Similarity search - Function | |||||||||||||||||||||||||||||||||
Biological species | ![]() synthetic construct (others) | |||||||||||||||||||||||||||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 4.05 Å | |||||||||||||||||||||||||||||||||
![]() | Horikoshi, N. / Miyake, R. / Sogawa-Fujiwara, C. / Ogasawara, M. / Takizawa, Y. / Kurumizaka, H. | |||||||||||||||||||||||||||||||||
Funding support | ![]()
| |||||||||||||||||||||||||||||||||
![]() | ![]() Title: Cryo-EM structures of the BAF-Lamin A/C complex bound to nucleosomes. Authors: Naoki Horikoshi / Ryosuke Miyake / Chizuru Sogawa-Fujiwara / Mitsuo Ogasawara / Yoshimasa Takizawa / Hitoshi Kurumizaka / ![]() Abstract: Barrier-to-autointegration factor (BAF) associates with mitotic chromosomes and promotes nuclear envelope assembly by recruiting proteins, such as Lamins, required for the reconstruction of the ...Barrier-to-autointegration factor (BAF) associates with mitotic chromosomes and promotes nuclear envelope assembly by recruiting proteins, such as Lamins, required for the reconstruction of the nuclear envelope and lamina. BAF also mediates chromatin anchoring to the nuclear lamina via Lamin A/C. However, the mechanism by which BAF and Lamin A/C bind chromatin and affect the chromatin organization remains elusive. Here we report the cryo-electron microscopy structures of BAF-Lamin A/C-nucleosome complexes. We find that the BAF dimer complexed with the Lamin A/C IgF domain occupies the nucleosomal dyad position, forming a tripartite nucleosomal DNA binding structure. We also show that the Lamin A/C Lys486 and His506 residues, which are reportedly mutated in lipodystrophy patients, directly contact the DNA at the nucleosomal dyad. Excess BAF-Lamin A/C complexes symmetrically bind other nucleosomal DNA sites and connect two BAF-Lamin A/C-nucleosome complexes. Although the linker histone H1 competes with BAF-Lamin A/C binding at the nucleosomal dyad region, the two BAF-Lamin A/C molecules still bridge two nucleosomes. These findings provide insights into the mechanism by which BAF, Lamin A/C, and/or histone H1 bind nucleosomes and influence chromatin organization within the nucleus. | |||||||||||||||||||||||||||||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 780.6 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 597.4 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Arichive directory | ![]() ![]() | HTTPS FTP |
---|
-Related structure data
Related structure data | ![]() 61233MC ![]() 9j8mC ![]() 9j8nC M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
-Protein , 7 types, 24 molecules AEaeBFbfCGcgDHdhKLklMmNn
#1: Protein | Mass: 15719.445 Da / Num. of mol.: 4 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() Gene: H3C1, H3FA, HIST1H3A, H3C2, H3FL, HIST1H3B, H3C3, H3FC HIST1H3C, H3C4, H3FB, HIST1H3D, H3C6, H3FD, HIST1H3E, H3C7, H3FI, HIST1H3F, H3C8, H3FH, HIST1H3G, H3C10, H3FK, HIST1H3H, H3C11, H3FF, ...Gene: H3C1, H3FA, HIST1H3A, H3C2, H3FL, HIST1H3B, H3C3, H3FC HIST1H3C, H3C4, H3FB, HIST1H3D, H3C6, H3FD, HIST1H3E, H3C7, H3FI, HIST1H3F, H3C8, H3FH, HIST1H3G, H3C10, H3FK, HIST1H3H, H3C11, H3FF, HIST1H3I, H3C12, H3FJ, HIST1H3J Production host: ![]() ![]() #2: Protein | Mass: 11676.703 Da / Num. of mol.: 4 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() #3: Protein | Mass: 14447.825 Da / Num. of mol.: 4 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() #4: Protein | Mass: 14217.516 Da / Num. of mol.: 4 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() #7: Protein | Mass: 10487.059 Da / Num. of mol.: 4 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() #8: Protein | Mass: 17551.369 Da / Num. of mol.: 2 / Fragment: Ig-fold domain Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() #9: Protein | Mass: 22633.172 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
---|
-DNA chain , 2 types, 4 molecules IiJj
#5: DNA chain | Mass: 59351.793 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) synthetic construct (others) / Production host: ![]() ![]() #6: DNA chain | Mass: 59823.086 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) synthetic construct (others) / Production host: ![]() ![]() |
---|
-Details
Has protein modification | N |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component | Name: Complex containing BAF, Lamin A/C IgF, H1, and nucleosome Type: COMPLEX / Entity ID: all / Source: RECOMBINANT |
---|---|
Molecular weight | Value: 0.58 MDa / Experimental value: NO |
Source (natural) | Organism: ![]() |
Source (recombinant) | Organism: ![]() ![]() |
Buffer solution | pH: 7.5 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 2500 nm / Nominal defocus min: 1000 nm |
Image recording | Electron dose: 59.5 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k) |
-
Processing
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3D reconstruction | Resolution: 4.05 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 152402 / Symmetry type: POINT | ||||||||||||||||||||||||
Refine LS restraints |
|