[English] 日本語
Yorodumi
- PDB-9ed1: Cryo-EM structure of the human KCa3.1/calmodulin channel in compl... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 9ed1
TitleCryo-EM structure of the human KCa3.1/calmodulin channel in complex with Ca2+ and 1,4-dihydropyridine (DHP-103)
Components
  • Calmodulin-1
  • Intermediate conductance calcium-activated potassium channel protein 4
KeywordsTRANSPORT PROTEIN / Ion channel / Membrane protein / Ca-binding protein
Function / homology
Function and homology information


intermediate conductance calcium-activated potassium channel activity / saliva secretion / small conductance calcium-activated potassium channel activity / stabilization of membrane potential / Ca2+ activated K+ channels / macropinocytosis / calcium-activated potassium channel activity / regulation of calcium ion import across plasma membrane / establishment of protein localization to mitochondrial membrane / type 3 metabotropic glutamate receptor binding ...intermediate conductance calcium-activated potassium channel activity / saliva secretion / small conductance calcium-activated potassium channel activity / stabilization of membrane potential / Ca2+ activated K+ channels / macropinocytosis / calcium-activated potassium channel activity / regulation of calcium ion import across plasma membrane / establishment of protein localization to mitochondrial membrane / type 3 metabotropic glutamate receptor binding / positive regulation of potassium ion transmembrane transport / establishment of protein localization to membrane / cell volume homeostasis / phospholipid translocation / nitric-oxide synthase binding / organelle localization by membrane tethering / mitochondrion-endoplasmic reticulum membrane tethering / autophagosome membrane docking / regulation of synaptic vesicle exocytosis / presynaptic endocytosis / regulation of cardiac muscle cell action potential / positive regulation of T cell receptor signaling pathway / negative regulation of ryanodine-sensitive calcium-release channel activity / calcineurin-mediated signaling / regulation of synaptic vesicle endocytosis / protein phosphatase activator activity / postsynaptic cytosol / adenylate cyclase binding / regulation of ryanodine-sensitive calcium-release channel activity / immune system process / catalytic complex / potassium channel activity / detection of calcium ion / regulation of cardiac muscle contraction / phosphatidylinositol 3-kinase binding / presynaptic cytosol / calcium channel inhibitor activity / cellular response to interferon-beta / regulation of release of sequestered calcium ion into cytosol by sarcoplasmic reticulum / titin binding / voltage-gated potassium channel complex / calcium channel regulator activity / potassium ion transmembrane transport / sperm midpiece / calcium channel complex / calyx of Held / nitric-oxide synthase regulator activity / response to amphetamine / adenylate cyclase activator activity / regulation of heart rate / protein serine/threonine kinase activator activity / sarcomere / regulation of cytokinesis / positive regulation of protein secretion / positive regulation of receptor signaling pathway via JAK-STAT / spindle microtubule / establishment of localization in cell / defense response / potassium ion transport / Schaffer collateral - CA1 synapse / cellular response to type II interferon / ruffle membrane / response to calcium ion / spindle pole / calcium ion transport / calcium-dependent protein binding / G2/M transition of mitotic cell cycle / myelin sheath / growth cone / protein phosphatase binding / protein homotetramerization / vesicle / transmembrane transporter binding / calmodulin binding / neuron projection / protein domain specific binding / neuronal cell body / centrosome / calcium ion binding / protein kinase binding / protein homodimerization activity / protein-containing complex / mitochondrion / nucleoplasm / plasma membrane / cytosol / cytoplasm
Similarity search - Function
Calmodulin-binding domain / Potassium channel, calcium-activated, SK / SK, calmodulin-binding domain superfamily / Calmodulin binding domain / Calcium-activated SK potassium channel / Calmodulin binding domain / Potassium channel domain / Ion channel / : / EF-hand domain pair ...Calmodulin-binding domain / Potassium channel, calcium-activated, SK / SK, calmodulin-binding domain superfamily / Calmodulin binding domain / Calcium-activated SK potassium channel / Calmodulin binding domain / Potassium channel domain / Ion channel / : / EF-hand domain pair / EF-hand, calcium binding motif / EF-Hand 1, calcium-binding site / EF-hand calcium-binding domain. / EF-hand calcium-binding domain profile. / EF-hand domain / EF-hand domain pair
Similarity search - Domain/homology
: / Intermediate conductance calcium-activated potassium channel protein 4 / Calmodulin-1
Similarity search - Component
Biological speciesHomo sapiens (human)
Rattus norvegicus (Norway rat)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.5 Å
AuthorsNam, Y.W. / Zhang, M.
Funding support United States, 4items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS)4R33 NS101182-03 United States
National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS)1R15 NS130420-01A1 United States
American Heart Association23AIREA1039423 United States
American Heart Association24CDA1260237 United States
CitationJournal: Proc Natl Acad Sci U S A / Year: 2025
Title: Design and structural basis of selective 1,4-dihydropyridine inhibitors of the calcium-activated potassium channel K3.1.
Authors: Seow Theng Ong / Young-Woo Nam / Joshua A Nasburg / Alena Ramanishka / Xuan Rui Ng / Zhong Zhuang / Stephanie Shee Min Goay / Hai M Nguyen / Latika Singh / Vikrant Singh / Alicia Rivera / M ...Authors: Seow Theng Ong / Young-Woo Nam / Joshua A Nasburg / Alena Ramanishka / Xuan Rui Ng / Zhong Zhuang / Stephanie Shee Min Goay / Hai M Nguyen / Latika Singh / Vikrant Singh / Alicia Rivera / M Elaine Eyster / Yang Xu / Seth L Alper / Heike Wulff / Miao Zhang / K George Chandy /
Abstract: The 1,4-dihydropyridines, drugs with well-established bioavailability and toxicity profiles, have proven efficacy in treating human hypertension, peripheral vascular disorders, and coronary artery ...The 1,4-dihydropyridines, drugs with well-established bioavailability and toxicity profiles, have proven efficacy in treating human hypertension, peripheral vascular disorders, and coronary artery disease. Every 1,4-dihydropyridine in clinical use blocks L-type voltage-gated calcium channels. We now report our development, using selective optimization of a side activity (SOSA), of a class of 1,4-dihydropyridines that selectively and potently inhibit the intermediate-conductance calcium-activated K channel K3.1, a validated therapeutic target for diseases affecting many organ systems. One of these 1,4-dihydropyridines, DHP-103, blocked K3.1 with an IC of 6 nM and exhibited exquisite selectivity over calcium channels and a panel of >100 additional molecular targets. Using high-resolution structure determination by cryogenic electron microscopy together with mutagenesis and electrophysiology, we delineated the drug binding pocket for DHP-103 within the water-filled central cavity of the K3.1 channel pore, where bound drug directly impedes ion permeation. DHP-103 inhibited gain-of-function mutant K3.1 channels that cause hereditary xerocytosis, suggesting its potential use as a therapeutic for this hemolytic anemia. In a rat model of acute ischemic stroke, the second leading cause of death worldwide, DHP-103 administered 12 h postischemic insult in proof-of-concept studies reduced infarct volume, improved balance beam performance (measure of proprioception) and decreased numbers of activated microglia in infarcted areas. K3.1-selective 1,4-dihydropyridines hold promise for the many diseases for which K3.1 has been experimentally confirmed as a therapeutic target.
History
DepositionNov 15, 2024Deposition site: RCSB / Processing site: RCSB
Revision 1.0Apr 16, 2025Provider: repository / Type: Initial release
Revision 1.1May 7, 2025Group: Data collection / Database references / Category: citation / citation_author / em_admin
Item: _citation.journal_volume / _citation.page_first ..._citation.journal_volume / _citation.page_first / _citation.page_last / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _em_admin.last_update

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Intermediate conductance calcium-activated potassium channel protein 4
B: Intermediate conductance calcium-activated potassium channel protein 4
C: Intermediate conductance calcium-activated potassium channel protein 4
D: Intermediate conductance calcium-activated potassium channel protein 4
E: Calmodulin-1
F: Calmodulin-1
G: Calmodulin-1
H: Calmodulin-1
hetero molecules


Theoretical massNumber of molelcules
Total (without water)236,69525
Polymers236,0198
Non-polymers67617
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy, not applicable
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein
Intermediate conductance calcium-activated potassium channel protein 4 / SKCa 4 / SKCa4 / hSK4 / Gardos channel / IKCa1 / hIK1 / KCa3.1 / Putative Gardos channel / hKCa4


Mass: 42598.633 Da / Num. of mol.: 4
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: KCNN4, IK1, IKCA1, KCA4, SK4 / Production host: Homo sapiens (human) / References: UniProt: O15554
#2: Protein
Calmodulin-1


Mass: 16406.004 Da / Num. of mol.: 4
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Rattus norvegicus (Norway rat) / Gene: Calm1, Calm, Cam, Cam1, CaMI / Production host: Homo sapiens (human) / References: UniProt: P0DP29
#3: Chemical
ChemComp-K / POTASSIUM ION


Mass: 39.098 Da / Num. of mol.: 5 / Source method: obtained synthetically / Formula: K / Feature type: SUBJECT OF INVESTIGATION
#4: Chemical
ChemComp-CA / CALCIUM ION


Mass: 40.078 Da / Num. of mol.: 12 / Source method: obtained synthetically / Formula: Ca / Feature type: SUBJECT OF INVESTIGATION
Has ligand of interestY
Has protein modificationN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Human SK4-CaM channel complex in the presence of calcium.
Type: COMPLEX / Entity ID: #1-#2 / Source: MULTIPLE SOURCES
Molecular weightValue: 0.23166 MDa / Experimental value: NO
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Homo sapiens (human) / Strain: HEK293s / Cell: HEK293s / Plasmid: pEGBacMam
Buffer solutionpH: 8
SpecimenConc.: 2 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: TFS KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal defocus max: 2300 nm / Nominal defocus min: 1300 nm
Specimen holderSpecimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER
Image recordingElectron dose: 50 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

EM software
IDNameVersionCategory
7UCSF ChimeraX1.8model fitting
13PHENIX1.21.1model refinement
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 3.5 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 109449 / Symmetry type: POINT
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00215712
ELECTRON MICROSCOPYf_angle_d0.44721252
ELECTRON MICROSCOPYf_dihedral_angle_d3.9492164
ELECTRON MICROSCOPYf_chiral_restr0.0352480
ELECTRON MICROSCOPYf_plane_restr0.0032664

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more